959 resultados para Semiconductor colloids
Resumo:
We have studied the current transport and electroluminescence properties of metal oxide semiconductor MOS devices in which the oxide layer, which is codoped with silicon nanoclusters and erbium ions, is made by magnetron sputtering. Electrical measurements have allowed us to identify a Poole-Frenkel conduction mechanism. We observe an important contribution of the Si nanoclusters to the conduction in silicon oxide films, and no evidence of Fowler-Nordheim tunneling. The results suggest that the electroluminescence of the erbium ions in these layers is generated by energy transfer from the Si nanoparticles. Finally, we report an electroluminescence power efficiency above 10−3%. © 2009 American Institute of Physics. doi:10.1063/1.3213386
Resumo:
ADSL (Asymmetrical Digital Subsciber Line) on puhelinkaapelia siirtotienä käyttävä nopea Internet-liityntäteknologia, joka on yleistynyt viime vuosina kuluttajamarkkinoilla. Analoginen puhelinverkko on alun perin tarkoitettu puheen siirtoon 0-4kHz:n äänitaajuuskanavalla, mikä aiheuttaa rajoitteita datasiirtoon ylemmillä taajuuksilla. Puhelinverkkojen rakenne vaihtelee alueittain sisältäen erilaisia datasiirtoa häiritseviä tekijöitä. Tämän vuoksi ADSL-päätelaitteilta vaaditaan sopeutumiskykyä vaativiinkin olosuhteisiin. Nykyiset ADSL-standardit eivät vaadi päätelaitteilta riittävää suorituskykyä, jotta luotettava tiedonsiirto onnistuisi myös huonoissa verkko-olosuhteissa. Epäkohdan korjaamiseksi DSL Forum on kehittänyt yhdessä laitevalmistajien, tietoliikenneoperaattoreiden ja komponenttivalmistajien kanssa ADSL-päätelaitteiden yhteensopivuustestaukseen testipaketin nimeltä TR-048. Se on kattava joukko tarkkaan kuvattuja testejä, joissa keskitytään enimmäkseen fyysisen kerroksen testaamiseen. TR-048:aa ei vaadita vielä nykyisissä ADSL-standardeissa, mutta yksityiset laboratoriot ja laitetoimittajat ovat vähitellen ottamassa sitä käyttöön. Tämän työn keskeisenä tavoittena oli tehdä sovellus, jolla automatisoitiin suurin osa TR-048:n sisältämien ADSL-linjan fyysisen kerroksen testeistä. Valmiilla sovelluksella ajetun testikierroksen perusteella arvioitiin sovelluksesta saatua hyötyä ja tuotekehitysvaiheessa olevan Nokia D500 tilaajasolmun suorituskykyä. Työn teoriaosassa esitellään ADSL-teknologiaa ja ADSL-lähetin-vastaanottimen loogista toimintaa.
Resumo:
In order to improve the efficacy and safety of treatments, drug dosage needs to be adjusted to the actual needs of each patient in a truly personalized medicine approach. Key for widespread dosage adjustment is the availability of point-of-care devices able to measure plasma drug concentration in a simple, automated, and cost-effective fashion. In the present work, we introduce and test a portable, palm-sized transmission-localized surface plasmon resonance (T-LSPR) setup, comprised of off-the-shelf components and coupled with DNA-based aptamers specific to the antibiotic tobramycin (467 Da). The core of the T-LSPR setup are aptamer-functionalized gold nanoislands (NIs) deposited on a glass slide covered with fluorine-doped tin oxide (FTO), which acts as a biosensor. The gold NIs exhibit localized plasmon resonance in the visible range matching the sensitivity of the complementary metal oxide semiconductor (CMOS) image sensor employed as a light detector. The combination of gold NIs on the FTO substrate, causing NIs size and pattern irregularity, might reduce the overall sensitivity but confers extremely high stability in high-ionic solutions, allowing it to withstand numerous regeneration cycles without sensing losses. With this rather simple T-LSPR setup, we show real-time label-free detection of tobramycin in buffer, measuring concentrations down to 0.5 μM. We determined an affinity constant of the aptamer-tobramycin pair consistent with the value obtained using a commercial propagating-wave based SPR. Moreover, our label-free system can detect tobramycin in filtered undiluted blood serum, measuring concentrations down to 10 μM with a theoretical detection limit of 3.4 μM. While the association signal of tobramycin onto the aptamer is masked by the serum injection, the quantification of the captured tobramycin is possible during the dissociation phase and leads to a linear calibration curve for the concentrations over the tested range (10-80 μM). The plasmon shift following surface binding is calculated in terms of both plasmon peak location and hue, with the latter allowing faster data elaboration and real-time display of the results. The presented T-LSPR system shows for the first time label-free direct detection and quantification of a small molecule in the complex matrix of filtered undiluted blood serum. Its uncomplicated construction and compact size, together with the remarkable performances, represent a leap forward toward effective point-of-care devices for therapeutic drug concentration monitoring.
Resumo:
Taajuudenmuuttajan kytkennän synnyttämä nopea jännitemuutos aiheuttaa pitkään moottorikaapeliin sähköisen värähtelyilmiön. Ilmiö on tullut erityisesti esille uusien nopeasti kytkevien puolijohdetehokytkimien ilmestyttyä markkinoille. Taajuudenmuuttajan lähtöön asennettu jännitteen nousunopeutta rajoittava suodin vähentää kaapelivärähtelyä, mutta riittävän pitkässä kaapelissa värähtely on voimakasta lähtösuotimesta huolimatta. Kaapelivärähtelyilmiön seurauksena moottorikaapelin taajuudenmuuttajan puoleiseen päähän syntyy voimakas virtavärähtely ja moottorin puoleiseen päähän voimakas jännitevärähtely. Sähkökäyttöjen vektorisäätöalgoritmit tekevät ohjauspäätöksiä moottorikaapelin taajuudenmuuttajan päästä tehtyjen virtamittausten perusteella. Säädön päätösväli on niin lyhyt, että kaapelin virtavärähtely ehtii häiritä säädön toimintaa. Tässä työssä on esitetty kaapelivärähtelyä kuvaava taajuudenmuuttajan lähtösuotimen huomioon ottava siirtofunktioperustainen matemaattinen malli. Mallin avulla kaapelivärähtelyilmiötä voi analysoida lineaarisen säätöteorian menetelmillä. Virtavärähtelyn moottorisäätöön tuomiin ongelmiin ratkaisuksi on esitetty virran mittasignaalin käsittelemistä analogisella ja digitaalisella suotimella. Simulointitulosten perusteella ratkaisua voidaan pitää toimivana. Lopuksi esitetään, kuinka avaruusvektoriteorian mukaista induktiomoottorimallia ja kaapelivärähtelymallia voidaan simuloida yhdessä.
Resumo:
In this article, we explore the possibility of modifying the silicon nanocrystal areal density in SiOx single layers, while keeping constant their size. For this purpose, a set of SiOx monolayers with controlled thickness between two thick SiO2 layers has been fabricated, for four different compositions (x=1, 1.25, 1.5, or 1.75). The structural properties of the SiO x single layers have been analyzed by transmission electron microscopy (TEM) in planar view geometry. Energy-filtered TEM images revealed an almost constant Si-cluster size and a slight increase in the cluster areal density as the silicon content increases in the layers, while high resolution TEM images show that the size of the Si crystalline precipitates largely decreases as the SiO x stoichiometry approaches that of SiO2. The crystalline fraction was evaluated by combining the results from both techniques, finding a crystallinity reduction from 75% to 40%, for x = 1 and 1.75, respectively. Complementary photoluminescence measurements corroborate the precipitation of Si-nanocrystals with excellent emission properties for layers with the largest amount of excess silicon. The integrated emission from the nanoaggregates perfectly scales with their crystalline state, with no detectable emission for crystalline fractions below 40%. The combination of the structural and luminescence observations suggests that small Si precipitates are submitted to a higher compressive local stress applied by the SiO2 matrix that could inhibit the phase separation and, in turn, promotes the creation of nonradiative paths.
Resumo:
Piikarbidi (SiC) on tunnettu korkealuokkaisena hioma-aineena ja hiekkapaperin pin-noitteena yli 100 vuoden ajan. Nykyisin ainetta käytetään pääasiassa puolijohteiden raaka-aineena. Piikarbidi on puolijohteena ylivoimainen tavanomaiseen piihin (Si) verrattuna lähes joka suhteessa johtuen sen kiderakenteesta, mutta sen valmistus on osoittautunut erittäin monimutkaiseksi johtuen pääasiassa vaikeudesta kasvattaa riittävän suuria ja laadukkaita SiC-kiteitä. Siksi tehoelektroniikan SiC-puolijohdekomponenttien laajamittaista käyttöä joudutaan yhä odottamaan. Tässä diplomityössä tehdään perusteellinen selvitys, miten piikarbidin valmistuspro-sessit eroavat normaaleista piin valmistusprosesseista, mitä etuja piikarbidin käytöllä saavutetaan ja vastaavasti mitä varjopuolia sillä on. Työssä selvitetään tällä hetkellä markkinoilla olevien SiC-tehopuolijohdekomponenttien ominaisuuksia, ketkä ovat teh-neet tutkimusta alalla, sekä esitetään arvioita SiC-tekniikan tulevaisuuden näkymistä.
Resumo:
Substances emitted into the atmosphere by human activities in urban and industrial areas cause environmental problems such as air quality degradation, respiratory diseases, climate change, global warming, and stratospheric ozone depletion. Volatile organic compounds (VOCs) are major air pollutants, emitted largely by industry, transportation and households. Many VOCs are toxic, and some are considered to be carcinogenic, mutagenic, or teratogenic. A wide spectrum of VOCs is readily oxidized photocatalytically. Photocatalytic oxidation (PCO) over titanium dioxide may present a potential alternative to air treatment strategies currently in use, such as adsorption and thermal treatment, due to its advantageous activity under ambient conditions, although higher but still mild temperatures may also be applied. The objective of the present research was to disclose routes of chemical reactions, estimate the kinetics and the sensitivity of gas-phase PCO to reaction conditions in respect of air pollutants containing heteroatoms in their molecules. Deactivation of the photocatalyst and restoration of its activity was also taken under consideration to assess the practical possibility of the application of PCO to the treatment of air polluted with VOCs. UV-irradiated titanium dioxide was selected as a photocatalyst for its chemical inertness, non-toxic character and low cost. In the present work Degussa P25 TiO2 photocatalyst was mostly used. In transient studies platinized TiO2 was also studied. The experimental research into PCO of following VOCs was undertaken: - methyl tert-butyl ether (MTBE) as the basic oxygenated motor fuel additive and, thus, a major non-biodegradable pollutant of groundwater; - tert-butyl alcohol (TBA) as the primary product of MTBE hydrolysis and PCO; - ethyl mercaptan (ethanethiol) as one of the reduced sulphur pungent air pollutants in the pulp-and-paper industry; - methylamine (MA) and dimethylamine (DMA) as the amino compounds often emitted by various industries. The PCO of VOCs was studied using a continuous-flow mode. The PCO of MTBE and TBA was also studied by transient mode, in which carbon dioxide, water, and acetone were identified as the main gas-phase products. The volatile products of thermal catalytic oxidation (TCO) of MTBE included 2-methyl-1-propene (2-MP), carbon monoxide, carbon dioxide and water; TBA decomposed to 2-MP and water. Continuous PCO of 4 TBA proceeded faster in humid air than dry air. MTBE oxidation, however, was less sensitive to humidity. The TiO2 catalyst was stable during continuous PCO of MTBE and TBA above 373 K, but gradually lost activity below 373 K; the catalyst could be regenerated by UV irradiation in the absence of gas-phase VOCs. Sulphur dioxide, carbon monoxide, carbon dioxide and water were identified as ultimate products of PCO of ethanethiol. Acetic acid was identified as a photocatalytic oxidation by-product. The limits of ethanethiol concentration and temperature, at which the reactor performance was stable for indefinite time, were established. The apparent reaction kinetics appeared to be independent of the reaction temperature within the studied limits, 373 to 453 K. The catalyst was completely and irreversibly deactivated with ethanethiol TCO. Volatile PCO products of MA included ammonia, nitrogen dioxide, nitrous oxide, carbon dioxide and water. Formamide was observed among DMA PCO products together with others similar to the ones of MA. TCO for both substances resulted in the formation of ammonia, hydrogen cyanide, carbon monoxide, carbon dioxide and water. No deactivation of the photocatalyst during the multiple long-run experiments was observed at the concentrations and temperatures used in the study. PCO of MA was also studied in the aqueous phase. Maximum efficiency was achieved in an alkaline media, where MA exhibited high fugitivity. Two mechanisms of aqueous PCO – decomposition to formate and ammonia, and oxidation of organic nitrogen directly to nitrite - lead ultimately to carbon dioxide, water, ammonia and nitrate: formate and nitrite were observed as intermediates. A part of the ammonia formed in the reaction was oxidized to nitrite and nitrate. This finding helped in better understanding of the gasphase PCO pathways. The PCO kinetic data for VOCs fitted well to the monomolecular Langmuir- Hinshelwood (L-H) model, whereas TCO kinetic behaviour matched the first order process for volatile amines and the L-H model for others. It should be noted that both LH and the first order equations were only the data fit, not the real description of the reaction kinetics. The dependence of the kinetic constants on temperature was established in the form of an Arrhenius equation.
Resumo:
Fetoscopic coagulation of placental anastomoses is the treatment of choice for severe twin-to-twin transfusion syndrome. In the present day, fetal laser therapy is also used to treat amniotic bands, chorioangiomas, sacrococcygeal teratomas, lower urinary tract obstructions and chest masses, all of which will be reviewed in this article. Amniotic band syndrome can cause limb amputation by impairing downstream blood flow. Large chorioangiomas (>4 cm), sacrococcygeal teratomas or fetal hyperechoic lung lesions can lead to fetal compromise and hydrops by vascular steal phenomenon or compression. Renal damage, bladder dysfunction and lastly death because of pulmonary hypolasia may be the result of megacystis caused by a posterior urethral valve. The prognosis of these pathologies can be dismal, and therapy options are limited, which has brought fetal laser therapy to the forefront. Management options discussed here are laser release of amniotic bands, laser coagulation of the placental or fetal tumor feeding vessels and laser therapy by fetal cystoscopy. This review, largely based on case reports, does not intend to provide a level of evidence supporting laser therapy over other treatment options. Centralized evaluation by specialists using strict selection criteria and long-term follow-up of these rare cases are now needed to prove the value of endoscopic or ultrasound-guided laser therapy.
Resumo:
The structure of the electric double layer in contact with discrete and continuously charged planar surfaces is studied within the framework of the primitive model through Monte Carlo simulations. Three different discretization models are considered together with the case of uniform distribution. The effect of discreteness is analyzed in terms of charge density profiles. For point surface groups,a complete equivalence with the situation of uniformly distributed charge is found if profiles are exclusively analyzed as a function of the distance to the charged surface. However, some differences are observed moving parallel to the surface. Significant discrepancies with approaches that do not account for discreteness are reported if charge sites of finite size placed on the surface are considered.
Resumo:
We use the analogy between scattering of a wave from a potential, and the precession of a spin-half particle in a magnetic field, to gain insight into the design of an antireflection coating for electrons in a semiconductor superlattice. It is shown that the classic recipes derived for optics are generally not applicable due to the different dispersion law for electrons. Using the stability conditions we show that a Poisson distribution of impedance steps is a better approximation than is a Gaussian distribution. Examples are given of filters with average transmissivity exceeding 95% over an allowed band.
Resumo:
The semiconductor particle detectors used at CERN experiments are exposed to radiation. Under radiation, the formation of lattice defects is unavoidable. The defects affect the depletion voltage and leakage current of the detectors, and hence affect on the signal-to-noise ratio of the detectors. This shortens the operational lifetime of the detectors. For this reason, the understanding of the formation and the effects of radiation induced defects is crucial for the development of radiation hard detectors. In this work, I have studied the effects of radiation induced defects-mostly vacancy related defects-with a simulation package, Silvaco. Thus, this work essentially concerns the effects of radiation induced defects, and native defects, on leakage currents in particle detectors. Impurity donor atom-vacancy complexes have been proved to cause insignificant increase of leakage current compared with the trivacancy and divacancy-oxygen centres. Native defects and divacancies have proven to cause some of the leakage current, which is relatively small compared with trivacancy and divacancy-oxygen.
Resumo:
Abstract Objective: To determine whether low-level laser therapy can prevent salivary hypofunction after radiotherapy and chemotherapy in head and neck cancer patients. Materials and Methods: We evaluated 23 head and neck cancer patients, of whom 13 received laser therapy and 10 received clinical care only. An InGaAlP laser was used intra-orally (at 660 nm and 40 mW) at a mean dose of 10.0 J/cm2 and extra-orally (at 780 nm and 15 mW) at a mean dose of 3.7 J/cm2, three times per week, on alternate days. Stimulated and unstimulated sialometry tests were performed before the first radiotherapy and chemotherapy sessions (N0) and at 30 days after the end of treatment (N30). Results: At N30, the mean salivary flow rates were significantly higher among the laser therapy patients than among the patients who received clinical care only, in the stimulated and unstimulated sialometry tests (p = 0.0131 and p = 0.0143, respectively). Conclusion: Low-level laser therapy, administered concomitantly with radiotherapy and chemotherapy, appears to mitigate treatment-induced salivary hypofunction in patients with head and neck cancer.
Resumo:
The plasma etching of semiconductor surfaces with fluorine-containing compounds has technological interest. Presently, considerable effort is being devoted to understand the chemistry involved. In this work, a numerical modeling analysis of the gas-phase decomposition of CF4/O2 mixtures, in the presence of silicon, was performed. The relative importance of individual processes was determined as well as the effect of the parameters' uncertainties. The results were compared with experimental data. The main etching agent in the system is the fluorine atom. The concentration of the main species, SiF4, CO, CO2 and COF2 depend on the composition of the mixture.
Resumo:
A simple and effective route has been developed for the synthesis of bimodal (3.6 and 9.4 nm) mesoporous silica materials that have two ordered interconnected pore networks. Mesostructures have been prepared through the self assembly mechanism by using a mixture of polyoxyethylene fluoroalkyl ether and triblock copolymer as building block. The investigation of the RF8(EO)9/P123/water phase diagram evidences that in the considered surfactant range of concentrations, the system is micellar (L1). DLS measurements indicate that this micellar phase is composed of two types of micelles, the size of the first one at around 7.6 nm corresponds unambiguously to the pure fluorinated micelles. The second type of micelles at higher diameter consists of fluorinated micelles which have accommodated a weak fraction of P123 molecules. Thus, in this study the bimodal mesoporous silica are really templated by two kinds of micelles.
Resumo:
Herein, we report the formation of organized mesoporous silica materials prepared from a novel nonionic gemini surfactant, myristoyl-end capped Jeffamine, synthesized from a polyoxyalkyleneamine (ED900). The behavior of the modified Jeffamine in water was first investigated. A direct micellar phase (L1) and a hexagonal (H1) liquid crystal were found. The structure of the micelles was investigated from the SAXS and the analysis by Generalized Indirect Fourier Transformation (GIFT), which show that the particles are globular of coreshell type. The myristoyl chains, located at the ends of the amphiphile molecule are assembled to form the core of the micelles and, as a consequence, the molecules are folded over on themselves. Mesoporous materials were then synthesized from the self-assembly mechanism. The recovered materials were characterized by SAXS measurements, nitrogen adsorptiondesorption analysis, transmission and scanning electron microscopy. The results clearly evidence that by modifying the synthesis parameters, such as the surfactant/silica precursor molar ratio and the hydrothermal conditions, one can control the size and the nanostructuring of the resulting material. It was observed that, the lower the temperature of the hydrothermal treatment, the better the mesopore ordering.