988 resultados para Scorpaena plumieri venom


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Australian terrestrial elapid snakes contain amongst the most potently toxic venoms known. However, despite the well-documented clinical effects of snake bite, little research has focussed on individual venom components at the molecular level. To further characterise the components of Australian elapid venoms, a complementary (cDNA) microarray was produced from the venom gland of the coastal taipan (Oxyuranus scutellatus) and subsequently screened for venom gland-specific transcripts. A number of putative toxin genes were identified, including neurotoxins, phospholipases, a pseudechetoxin-like gene, a venom natriuretic peptide and a nerve growth factor together with other genes involved in cellular maintenance. Venom gland-specific components also included a calglandulin-like protein implicated in the secretion of toxins from the gland into the venom. These toxin transcripts were subsequently identified in seven other related snake species, producing a detailed comparative analysis at the cDNA and protein levels. This study represents the most detailed description to date of the cloning and characterisation of different genes associated with envenomation from Australian snakes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project identified a novel family of six 66-68 residue peptides from the venom of two Australian funnel-web spiders, Hadronyche sp. 20 and H. infensa: Orchid Beach (Hexathelidae: Atracinae), that appear to undergo N- and/or C-terminal post-translational modifications and conform to an ancestral protein fold. These peptides all show significant amino acid sequence homology to atracotoxin-Hvf17 (ACTX-Hvf17), a non-toxic peptide isolated from the venom of H. versuta, and a variety of AVIT family proteins including mamba intestinal toxin 1 (MIT1) and its mammalian and piscine orthologs prokineticin 1 (PK1) and prokineticin 2 PK2). These AVIT family proteins target prokineticin receptors involved in the sensitization of nociceptors and gastrointestinal smooth muscle activation. Given their sequence homology to MITI, we have named these spider venom peptides the MIT-like atracotoxin (ACTX) family. Using isolated rat stomach fundus or guinea-pia ileum organ bath preparations we have shown that the prototypical ACTX-Hvf17, at concentrations up to 1 mu M, did not stimulate smooth muscle contractility, nor did it inhibit contractions induced by human PK1 (hPK1). The peptide also lacked activity on other isolated smooth muscle preparations including rat aorta. Furthermore, a FLIPR Ca2+ flux assay using HEK293 cells expressing prokineticin receptors showed that ACTX-Hvf17 fails to activate or block hPK1 or hPK2 receptors. Therefore, while the MIT-like ACTX family appears to adopt the ancestral disulfide-directed beta-hairpin protein fold of MIT1, a motif believed to be shared by other AVIT family peptides, variations in the amino acid sequence and surface charge result in a loss of activity on prokineticin receptors. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three natriuretic-like peptides (TNP-a, TNP-b, and TNP-c) were isolated from the venom of Oxyuranus microlepidotus (inland taipan) and were also present in the venoms of Oxyuranus scutellatus canni (New Guinea taipan) and Oxyuranus scutellatus scutellatus (coastal taipan). They were isolated by HPLC, characterised by mass spectrometry and Edman analysis, and consist of 35-39 amino acid residues. These molecules differ from ANP/BNP through replacement of invariant residues within the 17-membered ring structure and by inclusion of proline residues in the C-terminal tail. TNP-c was equipotent to ANP in specific GC-A assays or aortic ring assays whereas TNP-a and TNP-b were either inactive (GC-A over-expressing cells and endothelium-denuded aortic rings) or weakly active (endothelium-in tact aortic rings). TNP-a and TNP-b were also unable to competitively inhibit the binding of TNP-c in endothelium-denuded aortae (GC-A) or endothelium-in tact aortae (NPR-C). Thus, these naturally occurring isoforms provide a new platform for further investigation of structure-function relationships of natriuretic peptides. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A key component of the venom of many Australian snakes belonging to the elapid family is a toxin that is structurally and functionally similar to that of the mammalian prothrombinase complex. In mammals, this complex is responsible for the cleavage of prothrombin to thrombin and is composed of factor Xa in association with its cofactors calcium, phospholipids, and factor Va. The snake prothrombin activators have been classified on the basis of their requirement for cofactors for activity. The two major subgroups described in Australian elapid snakes, groups C and D, are differentiated by their requirement for mammalian coagulation factor Va. In this study, we describe the cloning, characterization, and comparative analysis of the factor X- and factor V-like components of the prothrombin activators from the venom glands of snakes possessing either group C or D prothrombin activators. The overall domain arrangement in these proteins was highly conserved between all elapids and with the corresponding mammalian clotting factors. The deduced protein sequence for the factor X-like protease precursor, identified in elapids containing either group C or D prothrombin activators, demonstrated a remarkable degree of relatedness to each other (80%-97%). The factor V-like component of the prothrombin activator, present only in snakes containing group C complexes, also showed a very high degree of homology (96%-98%). Expression of both the factor X- and factor V-like proteins determined by immunoblotting provided an additional means of separating these two groups at the molecular level. The molecular phylogenetic analysis described here represents a new approach for distinguishing group C and D snake prothrombin activators and correlates well with previous classifications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cone snail venom is a rich source of bioactives, in particular small disulfide rich peptides that disrupt synaptic transmission. Here, we report the discovery of conomap-Vt (Conp-Vt), an unusual linear tetradecapeptide isolated from Conus vitulinus venom. The sequence displays no homology to known conopeptides, but displays significant homology to peptides of the MATP (myoactive tetradecapeptide) family, which are important endogenous neuromodulators in molluscs, annelids and insects. Conp-Vt showed potent excitatory activity in several snail isolated tissue preparations. Similar to ACh, repeated doses of Conp-Vt were tachyphylactic. Since nicotinic and muscarinic antagonists failed to block its effect and Conp-Vt desensitised tissue remained responsive to ACh, it appears that Conp-Vt contractions were non-cholinergic in origin. Finally, biochemical studies revealed that Conp-Vt is the first member of the MATP family with a D-amino acid. Interestingly, the isomerization of L-Phe to D-Phe enhanced biological activity, suggesting that this post-translational modified conopeptide may have evolved for prey capture. (c) 2006 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence Of D-amino-acid-containing polypeptides, defensin-like peptide (DLP)-2 and Ornithorhyncus venom C-type natriuretic peptide (OvCNP)b, in platypus venom suggested the existence of a mammalian D-amino-acid-residue isomerase(s) responsible for the modification of the all-L-amino acid precursors. We show here that this enzyme(s) is present in the venom gland extract and is responsible for the creation of DLP-2 from DLP-4 and OvCNPb from OvCNPa. The isomerisation reaction is freely reversible and under well defined laboratory conditions catalyses the interconversion of the DLPs to full equilibration. The isomerase is similar to 50-60 kDa and is inhibited by methanol and the peptidase inhibitor amastatin. This is the first known L-to-D-amino-acid-residue isomerase in a mammal. (c) 2006 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Venom from the Australian elapid Pseudonaja textilis (Common or Eastern Brown snake), is the second most toxic snake venom known and is the most common cause of death from snake bite in Australia. This venom is known to contain a prothrombin activator complex, serine proteinase inhibitors, various phospholipase A(2)s, and pre-and postsynaptic neurotoxins. In this study, we performed a proteomic identification of the venom using two- dimensional gel electrophoresis, mass spectrometry, and de novo peptide sequencing. We identified most of the venom proteins including proteins previously not known to be present in the venom. In addition, we used immunoblotting and post-translational modification-specific enzyme stains and antibodies that reveal the complexity and regional diversity of the venom. Modifications observed include phosphorylation, gamma-carboxylation, and glycosylation. Glycoproteins were further characterized by enzymatic deglycosylation and by lectin binding specificity. The venom contains an abundance of glycoproteins with N-linked sugars that include glucose/mannose, N-acetylgalactosamine, N-acetylglucosamine, and sialic acids. Additionally there are multiple isoforms of mammalian coagulation factors that comprise a significant proportion of the venom. Indeed two of the identified proteins, a procoagulant and a plasmin inhibitor, are currently in development as human therapeutic agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endoporasitoid wasps have evolved various mechanisms to ensure successful development of their progeny, including co-injection of a cocktail of maternal secretions into the host hemocoel, including venom, calyx fluid, and polydnoviruses. The components of each type of secretion may influence host physiology and development independently or in a synergistic fashion. For example, venom fluid consists of several peptides and proteins that promote expression of polydnavirus genes in addition to other activities, such as inhibition of prophenoloxidase activation, inhibition of hemocytes spreading and aggregation, and inhibition of development. This review provides a brief overview of advances and prospects in the study of venom proteins from polydnavirus-producing endoparositoid wasps with a special emphasis on the role of C. rubecula venom proteins in host-parositoid interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During oviposition, most endoparasitoid wasps inject maternal factors into their hosts to interfere with host immune reactions and ensure successful development of their progeny. Since encapsulation is a major cellular defensive response of insects against intruding parasites, parasitoids have developed numerous mechanisms to suppress the host encapsulation capability by interfering with every step in the process, including recognition, adherence and spreading. In previous studies, components of Cotesia rubecula venom were shown to inhibit melanization of host hemolymph by interfering with the prophenoloxidase activation cascade and facilitate expression of polydnavirus genes. Here we report the isolation and characterization of another venom protein with similarity to calreticulin. Results indicate that C rubecula calreticulin (CrCRT) inhibits hemocyte spreading behavior, thus preventing encapsulation of the developing parasitoid. It is possible that the protein might function as an antagonist competing for binding sites with the host hemocyte calreticulin, which mediates early-encapsulation reactions. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The abundance and activity of the prothrombin activator (pseutarin C) within the venom of the Eastern brown snake (Pseudonaja textilis textilis) is the primary determinant of its coagulation potency. Textilinin-1, also in this venom, is a plasmin inhibitor which is thought to exert its toxic effects through the slowing of fibrinolysis. The aim of this report is to determine if there are differences in the potency of the venom from Eastern brown snakes collected from South Australia (SA) compared to those from Queensland (QLD). A concentration of 0.4 mu g/ml venom protein from six QLD specimens clotted citrated plasma in an average time of 21.4 +/- 3.3 s compared to 68.7 +/- 2.4 s for the same amount of SA venom (averaged for six individuals). The more potent procoagulant activity of the QLD venom was measured between 0.4 and 94 mu g/ml venom protein in plasma. The anti-plasmin activity of textilinin was also greater in the venom of the snakes collected from QLD, causing full inhibition of plasmin at approximately 1.88 mu g/ml of venom protein compared to approximately 7.5 mu g/ml for the SA venoms. It is concluded that geographic differentiation of the Eastern brown snakes results in significant differences venom potency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The venom from Australian elapid snakes contains a complex mixture of polypeptide toxins that adversely affect multiple homeostatic systems within their prey in a highly specific and targeted manner. Included in these toxin families are the recently described venom natriuretic peptides, which display similar structure and vasoactive functions to mammalian natriuretic peptides. This paper describes the identification and detailed comparative analysis of the cDNA transcripts coding for the mature natriuretic peptide from a total of nine Australian elapid snake species. Multiple isoforms were identified in a number of species and represent the first description of a natriuretic peptide from the venom gland for most of these snakes. Two distinct natriuretic peptide isoforms were selected from the common brown snake (Pseudonaja textilis), PtNP-a, and the mulga (Pseudechis australis), PaNP-c, for recombinant protein expression and functional analysis. Only one of these peptides, PtNP-a, displayed cGMP stimulation indicative of normal natriuretic peptide activity. Interestingly, both recombinant peptides demonstrated a dose-dependent inhibition of angiotensin converting enzyme (ACE) activity, which is predictive of the vasoactive effects of the toxin. The natriuretic peptides, however, did not possess any coagulopathic activity, nor did they inhibit or potentiate thrombin, adenosine diphosphate or arachidonic acid induced platelet aggregation. The data presented in this study represent a significant resource for understanding the role of various natriuretic peptides isoforms during the envenomation process by Australian elapid snakes. (c) 2006 Published by Elsevier Masson SAS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was firstly to identify active molecules in herbs, that are traditionally used for the treatment of snake bite, such as Curcuma antinaia, Curcuma contravenenum, Andrographis paniculata, and Tanacetum parthenium; secondly to test similar structurally related molecules and finally to prepare and evaluate an efficient formulation against Ophiophagus hannah venom intoxification. Three labdane based compounds, including labdane dialdehyde, labdane lactone, and labdane trialdehyde and two lactones including 14-deoxy-11,12-didehydroandrographolide and parthenolide were isolated by column chromatography and characterised. Using the isolated rat phrenic nerve-hemidiaphragm preparation, the antagonistic effect of crude extracts, isolated compounds and prepared formulations were measured in vitro on the inhibition of the neuromuscular transmission. Inhibition on muscle contraction, produced by the 5 μg/mL venom, was reversed by test agents in organ bath preparations. A labdane trialdehyde, isolated from C. contravenenum, was identified as the best antagonising agent in the low micromolar range. Tests on formulations of the most potent C. contravenenum extract showed, that the suppository with witepsol H15 was an effective medicine against O. hannah venom. This study elucidated the active compounds, accounting for the antivenin activity of traditionally used herbs and suggested the most suitable formulation, which may help to develop potent medicines for the treatment of snake bite in the future.