1000 resultados para SILICON COMPLEXES
Resumo:
Reactions of the bis(3,5-dimethylpyrazol-1-yl)cyclotriphosphazenes gem-N3P3Ph4(C3HN2Me2)2 (L1) and N3P3(MeNCH2CH2O)2(C3HN2Me2)2 (L2) with [M(CO)6] (M = Mo or W) afford complexes of the type [M(CO)3L] (L = L1 or L2), which have been characterised by IR and NMR spectroscopic data. The structures of [Mo(CO)3L1], [W(CO)3L2] and the ligand L2 have been determined by single-crystal X-ray diffraction. The phosphazenes act as novel tridentate NNN-donor ligands with two pyrazolyl nitrogen atoms and one phosphazene ring nitrogen atom bonded to the metal atom
Resumo:
The effect of fourteen minor elements (Al, As, B, Bi, C, Ga, Ge, In, N, P, Pb, S, Sb and Sn) on the solubility of oxygen in silicon melt has been estimated using a recently developed theoretical equation, with only fundamental physical parameters such as hard sphere diameter, atomic volume and molar heat of solution at infinite dilution as inputs. The results are expressed in the form of interaction parameters. Although only limited experimental data are available for comparison, the theoretical approach appears to predict the correct sign, but underestimates the magnitude of the interaction between oxygen and alloying elements. The present theoretical approach is useful in making qualitative predications on the effect of minor elements on the solubility of oxygen in silicon melt, when direct measurements are not available.
Resumo:
Time-resolved fluorescence studies were carried out on a series of free-base and zinc(II) derivatives of meso-tetraphenylporphyrins covalently linked to either 1,3-dinitrobenzene (DNB) or 1,3,5-trinitrobenzene (TNB) acceptor units. These acceptor units were linked at different sites (at the ortho, meta or para positions of one of the phenyl groups of meso-tetraphenylporphyrin) to the donor porphyrins such that the resulting isomeric intramolecular donor-acceptor complexes exhibit different centre-to-centre (ctc) distances and relative orientations. Biexponential fluorescence decay profiles observed for several of these covalently linked complexes were rationalized in terms of the presence of ''closed'' and ''extended'' conformers. Detailed analyses of the fluorescence decay data have provided a comprehensive understanding of the photoinduced electron transfer (PET) reactions occurring in systems containing zinc(II) porphyrin donors. It is observed that although DNB-linked zinc(II) complexes follow the trends predicted for the efficiency of PET with respect to donor-acceptor distance, the TNB-linked zinc(II) porphyrins exhibit a behaviour which is dictated by steric effects. Similarly, although the thermodynamic criteria predict a greater efficiency of charge separation in TNB-linked complexes compared with DNB-linked complexes, the reverse trend observed has been attributed to orientational effects. In the complexes containing free-base porphyrin donors, PET is expected to be less efficient from a thermodynamic viewpoint. In a few of these cases, fluorescence quenching seems to occur by parallel mechanisms other than PET.
Resumo:
Several covalently linked bisporphyrin systems, free-base (H2P---H2P), hybrid bisporphyrins (Zn---H2P) and Zn(II) dimers (ZnP---ZnP) and their 1:1 molecular complexes with sym 1,3,5-trinitrobenzene have been investigated by optical absorption and emission, and magnetic resonance spectroscopic methods. In these systems, two porphyrin units are linked singly through one of the meso aryl groups via ether linkages of variable length. The bisporphyrins cooperatively bind a molecule of a ?-acceptor; 1,3,5-trinitrobenzene (TNB). The binding constant values vary with interchromophore separation. Maximum binding is observed in the bisporphyrin bearing a two-ether covalent linkage. It is found that TNB quenches the fluorescence of the two porphyrine units in a selective manner. It is suggested that a critical distance between the two porphyrin units is necessary for the observance of maximum cooperative intermolecular binding with an acceptor.
Resumo:
A single step solid phase radioimmunoassay (SS-SPRIA) has been developed for human chorionic,gonadotropin (hCG) using monoclonal antibodies (MAb) from culture media adsorbed immunochemically on plastic tubes. The assays have been found to be very simple in terms of operation and do not demand purification of MAbs. Several MAbs which do not show any displacement in liquid phase RIA and ELISA provide a satisfactory SS-SPRIA. Our investigations revealed that the assumption regarding the stability of the primary Mab-Ag complex during incubation and washing steps in ELISAs is not strictly valid for dissociable MAbs. A comparison of different assay systems suggests that the single step SPRIA offers additional advantages over conventionally used multistep ELISA procedures and provides a quantitative probe for the analysis of epitope-paratope interactions.
Resumo:
Two intercalatable Co-II-complexes of anthryl or anthraquinone attached bispicolylamine derivatives cleave plasmid pTZ19R DNA spontaneously upon exposure to visible light under ambient conditions.
Resumo:
The charge-transfer complexes of I-2 with the n-donors diethyl ether and diethyl sulfide were studied at the Hartree-Fock and MP2 levels. The structures were fully optimized using the 3-21G((*)) basis set as well as with effective core potentials. The calculations consistently yield a C-2v structure for the ether-I-2 complex, but an unsymmetrical form for the sulfide-I-2 complex. A natural bond orbital analysis and the BSSE-corrected complexation energies reveal stronger interactions in the sulfide complex. The computed orbital energies of the monomers and complexes reproduce the trends in experimentally observed vertical ionization potentials.
Resumo:
EHT calculations on heterotrinuclear cobalt(III) complexes of the type [Cu{(OH)(2)Co(L(4))}(2)](4+) where L(4) denotes (en)(2) or (NH3)(4), en = ethylenediamine and their component species have been carried out. The results regarding bonding and structure for the trinuclear complexes are compared with those for the monomer components such as [Co(en)(2)(OH)(2)](+), [Co(NH3)(4)(OH)(2)](+) and [Cu(OH)(4)](2-) are discussed.
Resumo:
The photorearrangement of benzyl phenyl ethers and methyl phenoxyacetates was investigated in methanol and in complexes with cyclodextrin in both the solid state and aqueous solutions. Irradiation in cyclodextrin media leads to a large change in product distribution with a very significant ortho selectivity different from that found in methanol where the reaction is non-selective. For meta-substituted ethers and phenoxyacetates, an impressive regioselectivity between the two ortho-rearranged isomers is observed and this is significantly enhanced by increasing the substituent chain length which acts as a spacer to induce a tight fit between the host and the guest. The observed results are rationalized on the basis of specific orientations of the unsubstituted and meta-substituted ethers and phenoxyacetates in the cyclodextrin cavity.
Resumo:
Five tartrate-amine complexes have been studied in terms of crystal packing and hydrogen bonding frameworks. The salts are 3-bromoanilinium-L-monohydrogen tartrate 1, 3-fluoroanilinium-D-dibenzoylmonohydrogen tartrate 2, 1-nonylium-D-dibenzoylmonohydrogen tartrate 3, 1 -decylium-D-dibenzoylmonohydrogen tartrate 4, and 1,4-diaminobutanium-D-dibenzoyl tartrate trihydrate 5. The results indicate that there are no halogen-halogen interactions in the haloaromatic-tartrate complexes. The anionic framework allows accomodation of ammonium ions that bear alkyl chain residues of variable lengths. The long chain amines in these structures remain disordered while the short chain amines form multidirectional hydrogen bonds on either side.
Resumo:
The photodimerizations of coumarin and eight of its derivatives are found to proceed selectively in solid inclusion complexes with beta- and gamma-cyclodextrins (beta- and gamma-CD). The distribution of photodimers from these complexes is compared with those from the neat coumarin solids and their solutions in a variety of solvents. By assuming that the stereochemistry of the dimers reflects the packing arrangements of their precursors in the CD complexes, several hypotheses concering the locations and arrangements of the coumarins in the host toruses have been made. The stoichiometries of the complexes have been assigned on the basis of the presence or absence of photodimers and from NMR integration ratios of characteristic coumarin and saccharide protons. The relative orientations of substituted coumarins within a complex are inferred from the stereochemistry of the photodimers. Depending upon the substitution pattern of the coumarin molecules and the type of CD employed, complexes whose guest-host stoichiometries are 1:1, 2:1, and 2:2 have been identified. In several instances, dimers not available from irradiation of neat solid coumarins or their solutions have been obtained from the CD complexes.
Resumo:
The three crystal structures reported here provide details of the interactions of mannose and the mannosyl-alpha-1,3-mannose component of a pentamannose with banana lectin and evidence for the binding of glucosyl-alpha-1,2-glucose to the lectin. The known structures involving the lectin include a complex with glucosyl-beta-1,3-glucose. Modeling studies on the three disaccharide complexes with the reducing end and the nonreducing end at the primary binding site are also provided here. The results of the Xray and modeling studies show that the disaccharides with an alpha-1,3 linkage prefer to have the nonreducing end at the primary binding site, whereas the reducing end is preferred at the site when the linkage is beta-1,3 in mannose/glucose-specific beta-prism I fold lectins. In the corresponding galactose-specific lectins, however, alpha-1,3-linked disaccharides cannot bind the lectin with the nonreducing end at the primary binding site on account of steric clashes with an aromatic residue that occurs only when the lectin is galactose-specific. Molecular dynamics simulations based on the known structures involving banana lectin enrich the information on lectin-carbohydrate interactions obtained from crystal structures. They demonstrate that conformational selection as well as induced fit operate when carbohydrates bind to banana lectin.
Resumo:
Unsymmetrical diphosphazanes Ph(2)PN(Pr-i)PYY' [YY' = O2C12H8 (L(1)), O2C20H12 (L(2)); Y = Ph and Y' = OC6H4Br-4 (L(3)), OC(6)H(4)Me-4 (L(4)), OC(6)H(3)Me(2)-3,5 (L(5)), N(2)C(3)HMe(2)-3,5 (L(6))] react with cis-[PdCl2(COD)] (COD = cycloocta-1,5-diene) giving the chelate complexes of the type cis-[PdCl2{eta(2)-Ph(2)PN(Pr-i)PYY'}] [YY' = O2C12H8 (1), O2C20H12 (2), Y = Ph and Y' = OC6H4Br-4 (3), OC(6)H(4)Me-4 (4), OC(6)H(3)Me(2)-3,5 (5), N(2)C(3)HMe(2)-3,5 (6)]. The P-N bond in 3 and 5 undergoes a facile cleavage in methanol solution to give cis-[PdCl2{eta(1)Ph(2)P(OMe)}{eta(1)-PhP(NHPri)(Y')}] [Y' = OC6H4Br-4 (7), OC(6)H(3)Me(2)-3,5 (8)]. Reactions of Pd-2(dba)(3) . CHCl3 (dba = dibenzylideneacetone) with the diphosphazanes Ph(2)PN(Pr-i)PPhY' [Y' = OC(6)H(4)Me-4 (L(4)), N(2)C(3)HMe(2)-3,5 (L(6)), N2C3H3 (L(7))] in the presence of MeI yields cis-[PdI2{eta(2)-Ph(2)PN(Pr-i)PPhMe}] (9); the P-O or P-N(pyrazolyl) bond of the starting ligands is cleaved and a p-C(Me) bond is formed. An analogous oxidative addition reaction in the presence of Ph(2)PN(Pr-i)PPh(2) (L(8)) yields cis-[PdI(Me)(eta(2)-L(8))] (10) and cis-[PdI2(eta 2-L(8))] (11). The structures of 8 and 9 have been determined by X-ray diffraction. Copyright (C) 1996 Elsevier Science Ltd