970 resultados para Ruy Mauro Marini
Resumo:
We investigate the time evolution of entanglement in a process where a mobile particle is scattered by static spins. We show that entanglement increases monotonically during a transient and then saturates to a steady-state value. For a quasimonochromatic mobile particle, the transient time depends only on the group velocity and width of the incoming wave packet and is insensitive to the interaction strength and spin number of the scattering particles. These features do not depend on the interaction model and can be seen in various physical settings.
Resumo:
We show that homodyne measurements can be used to demonstrate violations of Bell's inequality with Gaussian states, when the local rotations used for these types of tests are implemented using nonlinear unitary operations. We reveal that the local structure of the Gaussian state under scrutiny is crucial in the performance of the test. The effects of finite detection efficiency are thoroughly studied and shown to only mildly affect the revelation of Bell violations. We speculate that our approach may be extended to other applications such as entanglement distillation where local operations are necessary elements besides quantum entanglement.
Resumo:
We demonstrate that perfect state transfer can be achieved using an engineered spin chain and clean local end-chain operations, without requiring the initialization of the state of the medium nor fine-tuning of control pulses. This considerably relaxes the prerequisites for obtaining reliable transfer of quantum information across interacting-spin systems. Moreover, it allows us to shed light on the interplay among purity, entanglement, and operations on a class of many-body systems potentially useful for quantum information processing tasks.
Resumo:
We discuss complementarity relations in a bipartite continuous variable system. Building up from the work done on discrete d-dimensional systems, we prove that for symmetric two-mode states, quantum complementarity relations can be put in a simple relation with the elements of the variance matrix. When this condition is not satisfied, such a connection becomes non-trivial. Our investigation is the first step towards an operative characterization of the complementarity in a scenario that has not been investigated so far.
Resumo:
An intuitive and accurate picture of the occurrence of optomechanical entanglement in a system of great current experimental interest is provided. At the optimal working point for entanglement generation, the interaction of a light field with a micromechanical oscillator is described in terms of simple SU( 2) transformations. This allows the analysis of a recent proposal for the revelation of quantumness in the state of a massive mirror from a clear and experimentally biased viewpoint.
Resumo:
We propose a protocol for perfect quantum state transfer that is resilient to a broad class of realistic experimental imperfections, including noise sources that could be modeled either as independent Markovian baths or as certain forms of spatially correlated environments. We highlight interesting connections between the fidelity of state transfer and quantum stochastic resonance effects. The scheme is flexible enough to act as an effective entangling gate for the generation of genuine multipartite entanglement in a control-limited setting. Possible experimental implementations using superconducting qubits are also briefly discussed.
Resumo:
We introduce and formalize the concept of information flux in a many-body register as the influence that the dynamics of a specific element receive from any other element of the register. By quantifying the information flux in a protocol, we can design the most appropriate initial state of the system and, noticeably, the distribution of coupling strengths among the parts of the register itself. The intuitive nature of this tool and its flexibility, which allow for easily manageable numerical approaches when analytic expressions are not straightforward, are greatly useful in interacting many-body systems such as quantum spin chains. We illustrate the use of this concept in quantum cloning and quantum state transfer and we also sketch its extension to nonunitary dynamics.
Resumo:
We propose an experimentally feasible scheme to generate a superposition of travelling field coherent states using an extremely small Kerr effect and an ancilla which could be a single photon or two entangled twin photons. The scheme contains ingredients which are all within the current state of the art and is robust against the main sources of errors which can be identified in our setups.
Resumo:
The speedup provided by quantum algorithms with respect to their classical counterparts is at the origin of scientific interest in quantum computation. However, the fundamental reasons for such a speedup are not yet completely understood and deserve further attention. In this context, the classical simulation of quantum algorithms is a useful tool that can help us in gaining insight. Starting from the study of general conditions for classical simulation, we highlight several important differences between two nonequivalent classes of quantum algorithms. We investigate their performance under realistic conditions by quantitatively studying their resilience with respect to static noise. This latter refers to errors affecting the initial preparation of the register used to run an algorithm. We also compare the evolution of the entanglement involved in the different computational processes.
Resumo:
We introduce a protocol for steady-state entanglement generation and protection based on detuning modulation in the dissipative interaction between a two-qubit system and a bosonic mode. The protocol is a global-addressing scheme which only requires control over the system as a whole. We describe a postselection procedure to project the register state onto a subspace of maximally entangled states. We also outline how our proposal can be implemented in a circuit-quantum electrodynamics setup.
Resumo:
We study the effects of amplitude and phase damping decoherence in d-dimensional one-way quantum computation. We focus our attention on low dimensions and elementary unidimensional cluster state resources. Our investigation shows how information transfer and entangling gate simulations are affected for d >= 2. To understand motivations for extending the one-way model to higher dimensions, we describe how basic qudit cluster states deteriorate under environmental noise of experimental interest. In order to protect quantum information from the environment, we consider encoding logical qubits into qudits and compare entangled pairs of linear qubit-cluster states to single qudit clusters of equal length and total dimension. A significant reduction in the performance of cluster state resources for d > 2 is found when Markovian-type decoherence models are present.