936 resultados para Rotating disk electrodes
Resumo:
We study the evolution of a viscous fluid drop rotating about a fixed axis at constant angular velocity $Omega$ or constant angular momentum L surrounded by another viscous fluid. The problem is considered in the limit of large Ekman number and small Reynolds number. The analysis is carried out by combining asymptotic analysis and full numerical simulation by means of the boundary element method. We pay special attention to the stability/instability of equilibrium shapes and the possible formation of singularities representing a change in the topology of the fluid domain. When the evolution is at constant $Omega$, depending on its value, drops can take the form of a flat film whose thickness goes to zero in finite time or an elongated filament that extends indefinitely. When evolution takes place at constant L and axial symmetry is imposed, thin films surrounded by a toroidal rim can develop, but the film thickness does not vanish in finite time. When axial symmetry is not imposed and L is sufficiently large, drops break axial symmetry and, depending on the value of L, reach an equilibrium configuration with a 2-fold symmetry or break up into several drops with a 2- or 3-fold symmetry. The mechanism of breakup is also described
Resumo:
In this contribution we simulate numerically the evolution of a viscous fluid drop rotating about a fixed axis at constant angular velocity ? or constant angular momentum L, surrounded by another viscous fluid. The problem is considered in the limit of large Ekman number and small Reynolds number. In the lecture we will describe the numerical method we have used to solve the PDE system that describes the evolution of the drop (3D boundary element method). We will also present the results we have obtained, paying special attention to the stability/instability of the equilibrium shapes.
Resumo:
Solidly mounted resonators (SMRs) with a top carbon nanotubes (CNTs) surface coating that doubles as an electrode and as a sensing layer have been fabricated. The influence of the CNTs on the frequency response of the resonators was studied by direct comparison to identical devices with a top metallic electrode. It was found that the CNTs introduced significantly less mass load on the resonators and these devices exhibited a greater quality factor, Q (>2000, compared to ∼1000 for devices with metal electrodes), which increases the gravimetric sensitivity of the devices by allowing the tracking of smaller frequency shifts. Protein solutions with different concentrations were loaded on the top of the resonators and their responses to mass-load from physically adsorbed coatings were investigated. Results show that resonators using CNTs as the top electrode exhibited a higher frequency change for a given load (∼0.25 MHz cm2 ng−1) compared to that of a metal thin film electrode (∼0.14 MHz cm2 ng−1), due to the lower mass of the CNTelectrodes and their higher active surface area compared to that of a thin film metal electrode. It is therefore concluded that the use of CNTelectrodes on resonators for their use as gravimetric biosensors is a significant improvement over metallic electrodes that are normally employed.
Resumo:
The work reported here shows a direct experimental comparison of the sensitivities of AlN solidly mounted resonators (SMR)-based biosensors fabricated with standard metal electrodes and with carbon nanotube electrodes. SMRs resonating at frequencies around 1.75 GHz have been fabricated, some devices using a thin film of multi-wall carbon nanotubes (CNTs) as the top electrode material and some identical devices using a chromium/gold electrode. Protein solutions with different concentrations were loaded on the top of the resonators and their responses to mass-load from physically adsorbed coatings were investigated. Results show that resonators using CNTs as the top electrode material exhibited higher frequency change for a given load due to the higher active surface area of a thin film of interconnecting CNTs compared to that of a metal thin film electrode and hence exhibited greater mass loading sensitivity. It is therefore concluded that the use of CNT electrodes on resonators for their use as gravimetric biosensors is viable and worthwhile.
Resumo:
A fully 3D iterative image reconstruction algorithm has been developed for high-resolution PET cameras composed of pixelated scintillator crystal arrays and rotating planar detectors, based on the ordered subsets approach. The associated system matrix is precalculated with Monte Carlo methods that incorporate physical effects not included in analytical models, such as positron range effects and interaction of the incident gammas with the scintillator material. Custom Monte Carlo methodologies have been developed and optimized for modelling of system matrices for fast iterative image reconstruction adapted to specific scanner geometries, without redundant calculations. According to the methodology proposed here, only one-eighth of the voxels within two central transaxial slices need to be modelled in detail. The rest of the system matrix elements can be obtained with the aid of axial symmetries and redundancies, as well as in-plane symmetries within transaxial slices. Sparse matrix techniques for the non-zero system matrix elements are employed, allowing for fast execution of the image reconstruction process. This 3D image reconstruction scheme has been compared in terms of image quality to a 2D fast implementation of the OSEM algorithm combined with Fourier rebinning approaches. This work confirms the superiority of fully 3D OSEM in terms of spatial resolution, contrast recovery and noise reduction as compared to conventional 2D approaches based on rebinning schemes. At the same time it demonstrates that fully 3D methodologies can be efficiently applied to the image reconstruction problem for high-resolution rotational PET cameras by applying accurate pre-calculated system models and taking advantage of the system's symmetries.
Resumo:
The elemental distribution of as-received (non-charged) and charged Li-ion battery positive electrodes containing LixNi0.8Co0.15Al0.05O2 (0.75 ? x ? 1.0) microparticles as active material is characterized by combining μ-PIXE and μ-PIGE techniques. PIGE measurements evidence that the Li distribution is inhomogeneous (existence of Li-rich and Li-depleted regions) in as-received electrodes corresponding with the distribution of secondary particles but it is homogeneous within the studied individual secondary micro-particles. The dependence of the Li distribution on electrode thickness and on charging conditions is characterized by measuring the Li distribution maps in specifically fabricated cross-sectional samples. These data show that decreasing the electrode thickness down to 35 μm and charging the batteries at slow rate give rise to more homogeneous Li depth profiles.
Resumo:
A simplified CFD wake model based on the actuator-disk concept is used to simulate the wind turbine, represented by an actuator disk upon which a distribution of forces, defined as axial momentum sources, are applied on the incoming flow. The rotor is supposed to be uniformly loaded, with the exerted forces as a function of the incident wind speed, the thrust coefficient and the rotor diameter. The model is validated through experimental measurements downwind of a wind turbine in terms of wind speed deficit. Validation on turbulence intensity will also be made in the near future.
Resumo:
We study a model equation that mimics convection under rotation in a fluid with temperature- dependent properties (non-Boussinesq (NB)), high Prandtl number and idealized boundary conditions. It is based on a model equation proposed by Segel [1965] by adding rotation terms that lead to a Kuppers-Lortz instability [Kuppers & Lortz, 1969] and can develop into oscillating hexagons. We perform a weakly nonlinear analysis to find out explicitly the coefficients in the amplitude equation as functions of the rotation rate. These equations describe hexagons and os- cillating hexagons quite well, and include the Busse?Heikes (BH) model [Busse & Heikes, 1980] as a particular case. The sideband instabilities as well as short wavelength instabilities of such hexagonal patterns are discussed and the threshold for oscillating hexagons is determined.
Resumo:
We employ numerical computations of the full Navier-Stokes equations to investigate non-Boussinesq convection in a rotating system using water as the working fluid. We identify two regimes. For weak non- Boussinesq effects the Hopf bifurcation from steady to oscillating (whirling) hexagons is supercritical and typical states exhibit defect chaos that is systematically described by the cubic complex Ginzburg-Landau equation. For stronger non-Boussinesq effects the Hopf bifurcation becomes subcritical and the oscil- lations exhibit localized chaotic bursting, which is modeled by a quintic complex Ginzburg-Landau equation.
Resumo:
We derive a semi-analytic formulation that permits to study the long-term dynamics of fast-rotating inert tethers around planetary satellites. Since space tethers are extensive bodies they generate non-keplerian gravitational forces which depend solely on their mass geometry and attitude, that can be exploited for controlling science orbits. We conclude that rotating tethers modify the geometry of frozen orbits, allowing for lower eccentricity frozen orbits for a wide range of orbital inclination, where the length of the tether becomes a new parameter that the mission analyst may use to shape frozen orbits to tighter operational constraints.
Resumo:
The calibration results of one anemometer equipped with several rotors, varying their size, were analyzed. In each case, the 30-pulses pert turn output signal of the anemometer was studied using Fourier series decomposition and correlated with the anemometer factor (i.e., the anemometer transfer function). Also, a 3-cup analytical model was correlated to the data resulting from the wind tunnel measurements. Results indicate good correlation between the post-processed output signal and the working condition of the cup anemometer. This correlation was also reflected in the results from the proposed analytical model. With the present work the possibility of remotely checking cup anemometer status, indicating the presence of anomalies and, therefore, a decrease on the wind sensor reliability is revealed.
Resumo:
Graphene and carbon nanotubes are promising materials for supercapacitor electrodes because of their high specific surface area and excellent electrical, thermal, and mechanical properties. However, these materials suffer from a high manufacturing cost and some aggregation of graphene layers or the presence of toxic residual metallic impurities of carbon nanotubes.
Resumo:
We derive a semi-analytic formulation that enables the study of the long-term dynamics of fast-rotating inert tethers around planetary satellites. These equations take into account the coupling between the translational and rotational motion, which has a non-negligible impact on the dynamics, as the orbital motion of the tether center of mass strongly depends on the tether plane of rotation and its spin rate, and vice-versa. We use these governing equations to explore the effects of this coupling on the dynamics, the lifetime of frozen orbits and the precession of the plane of rotation of the tether.
Resumo:
A numerical method has been developed to determine the stability limits for liquid bridges held between noncircular supporting disks and the application to a configuration with a circular and an elliptical disk subjected to axial acceleration has been made. The numerical method led to results very different from the available analytical solution which has been revisited and a better approximation has been obtained. It has been found that just retaining one more term in the asymptotic analysis the solution reproduces the real behavior of the configuration and the numerical results.
Resumo:
Platinum is the most used catalyst in electrodes for fuel cells due to its high catalytic activity. Polymer electrolyte and direct methanol fuel cells usually include Pt as catalyst in their electrodes. In order to diminish the cost of such electrodes, different Pt deposition methods that permit lowering the metal load whilst maintaining their electroactivity, are being investigated. In this work, the behaviour of electron beam Pt (e-beam Pt) deposited electrodes for fuel cells is studied. Three different Pt loadings have been investigated. The electrochemical behaviour by cyclic voltammetry in H2SO4, HClO4 and in HClO4+MeOH before and after the Pt deposition on carbon cloth has been analysed. The Pt improves the electrochemical properties of the carbon support used. The electrochemical performance of e-beam Pt deposited electrodes was finally studied in a single direct methanol fuel cell (DMFC) and the obtained results indicate that this is a promising and adequate method to prepare fuel cell electrodes.