905 resultados para Resistance, Gender, Change
Resumo:
The present work is focused on the role of formaldehyde in indoors Pb corrosion, that is still a controversial issue. Pb coupons were exposed to the atmosphere produced by formaldehyde aqueous solutions (1% and 4% in volume) and corrosion was followed by Raman Microscopy. The compounds formed in both experiments were the same, but were not in agreement with previously reported results in the literature, that identified plumbonacrite, hidrocerussite and Pb oxide. The experiments here reported have clearly shown that formates are produced on Pb surfaces exposed to formaldehyde and that oxidants, such as H(2)O(2), are not necessary. Formaldehyde oxidation also occurs with powdered PbO in a controlled environment. The Raman spectra of the Pb formates are much more complex than the Pb(HCO(2))(2) spectrum and change when exposed to room conditions, by a slow reaction with CO(2), forming Pb carbonates (hidrocerussite and plumbonacrite mostly) and Pb(HCO(2))(2). Such spectral change may be responsible for the differences in terms of chemical composition of the corrosion layer when the data here reported is compared with the literature. Other factors that must be considered are the storage conditions (particularly relative humidity and CO(2) concentration) and time; the effect of metal composition cannot be discarded as it is well known that the presence of other metals can change significantly the Pb resistance to oxidation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Cardiovascular responses elicited by the stimulation of kinin B2 receptors in the IV cerebral ventricle paratrigeminal nucleus or in the thoracic spinal cord are similar to those observed during an exercise bout Considering that the kalikrein-kinin system (KKS) could act on the cardiovascular modulation during behavioral responses as physical exercise or stress this study evaluated the central B2 receptor densities of Wistar (W) and spontani ously hypertensive rats (SHR) after chronic moderate exercise Animals we re exercise-trained for ten weeks on a treadmill Afterwards systolic blood pressure decreased in both trained strains Animals were killed and the medulla and spinal cord extracted for B2 receptor autoradiography Trained animals were compared to their sedentary controls Sedentary groups showed specific binding sites for Hoe-140 (fmol/mg of tissue) in laminas 1 and 2 of the spinal cord nucleus of the solitary tract (NTS) area postrema (AP) spinal trigeminal tract (sp5) and paratrigeminal nucleus (Pa5) In trained W a significant increase (p<0 05) in specific binding was observed in the Pa5 (31 3%) and NTS (28 2%) Trained SHR showed a significant decrease in n ceptor density in lamina 2 (21 9%) of the thoracic spinal cord and an increase in specific binding in Pa5 (36 1%) We suggest that in the medulla chronic exercise could hyper stimulate the KKS enhancing their efficiency through the increase of B2 receptor density involving this receptor in central cardiovascular control during exercise or stress In the lamina 2 B2 receptor might be involved in the exercise-induced hypotension (C) 2010 Elsevier BV All rights reserved
Resumo:
The purpose of our study was to compare the effects of 8-week progressive strength and power training regimens on strength gains and muscle plasticity [muscle fiber hypertrophy and phenotype shift, mammalian target of rapamycin (mTOR), regulatory-associated protein of mTOR (RAPTOR), rapamycin-insensitive companion of m-TOR (RICTOR), calcineurin and calcipressin gene expression]. Twenty-nine physically active subjects were divided into three groups: strength training (ST), power training (PT) and control (C). Squat 1 RM and muscle biopsies were obtained before and after the training period. Strength increased similarly for both ST and PT groups (P < 0.001). Fiber types I, IIa and IIb presented hypertrophy main time effect (P < 0.05). Only type IIb percentage decreased from pre- to post-test (main time effect, P < 0.05). mTOR and RICTOR mRNA expression increased similarly from pre- to post-test (P < 0.01). RAPTOR increased after training for both groups (P < 0.0001), but to a greater extent in the ST (P < 0.001) than in the PT group. 4EBP-1 decreased after training when the ST and PT groups were pooled (P < 0.05). Calcineurin levels did not change after training, while calcipressin increased similarly from pre- to post-test (P < 0.01). In conclusion, our data indicate that these training regimens produce similar performance improvements; however, there was a trend toward greater hypertrophy-related gene expression and muscle fiber hypertrophy in the ST group.
Resumo:
GUALANO, B., M. NEVES JR, F. R. LIMA, A. L. PINTO, G. LAURENTINO, C. BORGES, L. BAPTISTA, G. G. ARTIOLI, M. S. AOKI, A. MORISCOT, A. H. LANCHA JR, E. BONFA, and C. UGRINOWITSCH. Resistance Training with Vascular Occlusion in Inclusion Body Myositis: A Case Study. Med Sci. Spot-is Exerc., Vol. 42, No. 2, pp. 250-254, 2010. Inclusion body myositis (IBM) is a rare idiopathic inflammatory myopathy that produces remarkable muscle weakness. Resistance training with vascular occlusion has been shown to improve muscle strength and cross-sectional area in other muscle wasting conditions. Purpose: We evaluated the efficacy of a moderate-intensity resistance training program combined with vascular occlusion by examining functional capacity, muscle morphology, and changes in the expression of genes related to muscle protein synthesis and proteolysis in a patient with IBM. Methods: A 65-yr-old man with IBM resistant to all proposed treatments underwent resistance training with vascular occlusion for 12 wk. Leg press one-repetition maximum; thigh cross-sectional area; balance, mobility, and muscle function; quality of life; and blood markers of inflammation and muscle damage were assessed at baseline and after the 12-wk program. The messenger RNA (mRNA) expression levels of mechanogrowth factor, mammalian target of rapamycin, atrogin-1, and muscle RING finger-1 were also quantified. Results: After the 12-wk training program, the patient`s leg press one-repetition maximum, balance and mobility function, and thigh cross-sectional area increased 15.9%, 60%, and 4.7%, respectively. All Short Form-36 Health Survey Questionnaire subscales demonstrated improvements as well, varying from 18% to 600%. mRNA expression of mechanogrowth factor increased 3.97-fold, whereas that of atrogin-1 decreased 0.62-fold. Muscle RING finger-1 and mammalian target of rapamycin mRNA levels were only slightly altered, 1.18- and 1.28-fold, respectively. Importantly, the exercise did not induce disease flare. Conclusions: We describe a novel, and likely the first, nonpharmacological therapeutic tool that might be able to counteract the muscle atrophy and the declining strength that usually occur in IBM.
Resumo:
Thyroid hormone receptor beta (TR beta also listed as THRB oil the MGI Database)-selective agonists activate brown adipose tissue (BAT) thermogenesis, while only minimally affecting cardiac activity or lean body mass. Here, we tested the hypothesis that daily administration of the TR beta agonist GC-24 prevents the metabolic alterations associated with a hypercaloric diet. Rats were placed on a high-fat diet and after a month exhibited increased body weight (BW) and adiposity, fasting hyperglycemia and glucose intolerance, increased plasma levels of triglycerides, cholesterol, nonesterified Fatty acids and interleukin-6. While GC-24 administration to these animals did not affect food ingestion or modified the progression of BW gain, it did increase energy, g the increase in adiposity Without expenditure, eliminating causing cardiac hypertrophy Fasting hyperglycemia remained unchanged, but treatment with GC-24 improved glucose I tolerance by increasing insulin Sensitivity and also normalized plasma triglyceride levels. plasma cholesterol levels were only Partially normalized and liver cholesterol content remained high in the GC-24-treated animals. Gene expression in liver, skeletal muscle, and white adipose tissue was only minimally affected by treatment with GC-24, with the main target being BAT In conclusion, during high-fat feeding treatment with the TR beta-selective agonist, GC-24 only partially improves metabolic control probably as a result Of accelerating the resting metabolic rate. Journal of Endocrinology (2009) 203, 291-299
Resumo:
Monteiro, AG, Aoki, MS, Evangelista, AL, Alveno, DA, Monteiro, GA, Picarro, IDC, and Ugrinowitsch, C. Nonlinear periodization maximizes strength gains in split resistance training routines. J Strength Cond Res 23(4): 1321-1326, 2009-The purpose of our study was to compare strength gains after 12 weeks of nonperiodized (NP), linear periodized (LP), and nonlinear periodized (NLP) resistance training models using split training routines. Twenty-seven strength-trained men were recruited and randomly assigned to one of 3 balanced groups: NP, LP, and NLP. Strength gains in the leg press and in the bench press exercises were assessed. There were no differences between the training groups in the exercise pre-tests (p > 0.05) (i.e., bench press and leg press). The NLP group was the only group to significantly increase maximum strength in the bench press throughout the 12-week training period. In this group, upper-body strength increased significantly from pre-training to 4 weeks (p < 0.0001), from 4 to 8 weeks (p = 0.004), and from 8 weeks to the post-training (p < 0.02). The NLP group also exhibited an increase in leg press 1 repetition maximum at each time point (pre-training to 4 weeks, 4-8 week, and 8 weeks to post-training, p < 0.0001). The LP group demonstrated strength increases only after the eight training week (p = 0.02). There were no further strength increases from the 8-week to the post-training test. The NP group showed no strength increments after the 12-week training period. No differences were observed in the anthropometric profiles among the training models. In summary, our data suggest that NLP was more effective in increasing both upper- and lower-body strength for trained subjects using split routines.
Resumo:
Aim. The purpose of present study was to compare the acute physiological responses to a circuit weight training with the responses to a combined circuit training (weight training and treadmill run). Methods. The sample consisted of 25 individuals at an average state of training, 10 men and 15 female, between 18 and 35 year old. There were selected 60 second sets of resistance exercises to the circuit weight training (CWT). Whereas in the combined circuit training (CCT), the subjects spent 30 seconds on the same resistance exercises and 30 seconds running on the treadmill. The rest intervals between the sets lasted 15 seconds. The analysis of variance (ANOVA) with 5% significance level was utilized to the statistical analysis of the results. Results. Comparing circuit training protocols, it was noted that CCT elicits a higher relative and absolute <(V)over dot>O(2) and energy expenditure values than CWT for both genders (P<0.05). Regarding inter-gender comparison, males showed higher absolute and relative <(V)over dot>O(2) and absolute energy expenditure values for both CWT and CCT than females (P<0.05). Females showed a significant greater % <(V)over dot>O(2max) value for both CWT and CCT. Due to the experimental conditions used to state both circuit training bouts (CWT and CCT), the <(V)over dot>O(2) rate found was higher than the values reported by previous studies which used heavier weight lift. Conclusion. CCT seems adequate to produce cardiovascular improvements and greater energy expenditure for both men and women, while CWT group classes are sufficient only for unfit women.
Resumo:
It has been suggested that muscle tension plays a major role in the activation of intracellular pathways for skeletal muscle hypertrophy via an increase in mechano growth factor (MGF) and other downstream targets. Eccentric exercise (EE) imposes a greater amount of tension on the active muscle. In particular, high-speed EE seems to exert an additional effect on muscle tension and, thus, on muscle hypertrophy. However, little is known about the effect of EE velocity on hypertrophy signaling. This study investigated the effect of acute EE-velocity manipulation on the Akt/mTORCI/p70(S6K) hypertrophy pathway. Twenty subjects were assigned to either a slow (20 degrees.s(-1); ES) or fast EE (210 degrees.s(-1); EF) group. Biopsies were taken from vastus lateralis at baseline (B), immediately after (T1), and 2 h after (T2) the completion of 5 sets of 8 repetitions of eccentric knee extensions. Akt, mTOR, and p70(S6K) total protein were similar between groups, and did not change postintervention. Further, Akt and p70(S6K) protein phosphorylation were higher at T2 than at B for ES and EF. MGF messenger RNA was similar between groups, and only significantly higher at T2 than at B in ES. The acute manipulation of EE velocity does not seem to differently influence intracellular hypertrophy signaling through the Akt/mTORCI/p70S6K pathway.
Resumo:
Aim. The purpose of the present study was to compare the effect of different resistance training systems (Multiple-set [MS] and Pyramid [P]) on hormonal, metabolic and perceptual markers of internal load. Methods. Ten healthy men performed two resistance training sessions (MS and P) which consisted of three exercises (bench press, peck deck and decline bench press) with the same total volume of load lifted. The training sessions were performed 14 days apart and allocated in a counter-balanced order. Hormonal (plasma insulin, growth hormone [GH], testosterone and cortisol) and metabolic (blood glucose and lactate) responses were assessed before and after each exercise bout. Session rating of perceived exertion (session RPE) was taken 30-min following each bout. Results. No difference was observed for session-RPE between P and MS bouts (P>0.05). Plasma GH, cortisol and lactate increased significantly after exercise both bouts (P<0.01), but there were no significant changes between MS and P (P>0.05). Conclusion. It is concluded that the acute bout of resistance exercise following MS and P systems provide similar training strain when the total volume of load lifted is matched.
Resumo:
Background: Research on life expectancy has demonstrated the negative impact of disability on the health of older adults and its differential effects on women as evidenced by their higher disabled life expectancy (DLE). The goal of the present study was to investigate gender differences in total life expectancy (TLE), disability-free life expectancy (DFLE), and DLE; examine gender differences on personal care assistance among older adults in Sao Paulo, Brazil; and discuss the implications for public policies. Methods: The sample was drawn from two waves (2000, 2006) of the dataset of Salud, Bienestar, y Envejecimiento, a large longitudinal study conducted in Sao Paulo (n = 2,143). The study assessed disability using the activities of daily living (ADL). The interpolation of Markov Chain method was used to estimate gender differences in TLE, DLE, and DFLE. Findings: TLE at age 60 years was approximately 5 years longer for women than men. Women aged 60 years were expected to live 28% of their remaining lives twice the percentage for men with at least one ADL disability. These women also lived more years (M = 0.71, SE = 0.42) with three or more ADL disabilities than men (M = 0.82, SE = 0.16). In terms of personal care assistance, women received more years of assistance than men. Conclusion: Among older adults in Sao Paulo, women lived longer lives but experienced a higher and more severe disability burden than men. In addition, although women received more years of personal assistance than men, women experienced more unmet care assistance needs. Copyright (C) 2011 by the Jacobs Institute of Women`s Health. Published by Elsevier. Inc.
Resumo:
center dot Dynamic resistance exercise promotes a sizeable increase in blood pressure during its execution in non medicated hypertensives. WHAT THIS STUDY ADDS center dot Atenolol not only decreases blood pressure level but also mitigates the increase of blood pressure during dynamic resistance exercise in hypertensive patients. An increase in blood pressure during resistance exercise might be at least in part attributed to an increase in cardiac output. AIMS This study was conducted to determine whether atenolol was able to decrease BP level and mitigate BP increase during dynamic resistance exercise performed at three different intensities in hypertensives. METHODS Ten essential hypertensives (systolic/diastolic BP between 140/90 and 160/105 mmHg) were blindly studied after 6 weeks of placebo and atenolol. In each phase, volunteers executed, in a random order, three protocols of knee-extension exercises to fatigue: (i) one set at 100% of 1 RM; (ii) three sets at 80% of 1 RM; and (iii) three sets at 40% of 1 RM. Intra-arterial radial blood pressure was measured throughout the protocols. RESULTS Atenolol decreased systolic BP maximum values achieved during the three exercise protocols (100% = 186 +/- 4 vs. 215 +/- 7, 80% = 224 +/- 7 vs. 247 +/- 9 and 40% = 223 +/- 7 vs. 252 +/- 16 mmHg, P < 0.05). Atenolol also mitigated an increase in systolic BP in the first set of exercises (100% = +38 +/- 5 vs. +54 +/- 9; 80% = +68 +/- 11 vs. +84 +/- 13 and 40% = +69 +/- 7 vs. +84 +/- 14, mmHg, P < 0.05). Atenolol decreased diastolic BP values and mitigated its increase during exercise performed at 100% of 1 RM (126 +/- 6 vs. 145 +/- 6 and +41 +/- 6 vs. +52 +/- 6, mmHg, P < 0.05), but not at the other exercise intensities. CONCLUSIONS Atenolol was effective in both reducing systolic BP maximum values and mitigating BP increase during resistance exercise performed at different intensities in hypertensive subjects.
Resumo:
Blood pressure (BP) assessment during resistance exercise can be useful to avoid high BP, reducing cardiovascular risk, especially in hypertensive individuals. However, non-invasive accurate technique for this purpose is not available. The aim of this study was to compare finger photoplethysmographic (FPP) and intra-arterial BP values and responses during resistance exercise. Eight non-medicated hypertensive subjects (5 males, 30-60 years) were evaluated during pre-exercise resting period and during three sets of the knee extension exercise performed at 80% of 1RM until fatigue. BP was measured simultaneously by FPP and intra-arterial methods. Data are mean +/- SD. Systolic BP was significantly higher with FPP than with intra-arterial: at pre-exercise (157 +/- 13 vs. 152 +/- 10 mmHg; p < 0.01) and the mean (202 +/- 29 vs. 198 +/- 26 mmHg; p < 0.01), and the maximal (240 +/- 26 vs. 234 +/- 16 mmHg; p < 0.05) values achieved during exercise. The increase in systolic BP during resistance exercise was similar between FPP and intra-arterial (+ 73 +/- 29 vs. + 71 +/- 18 mmHg; p = 0.59). Diastolic BP values and increases were lower with FPP. In conclusion, FPP provides similar values of BP increment during resistance exercise than intra-arterial method. However, it overestimates by 2.6 +/- 6.1% the maximal systolic BP achieved during this mode of exercise and underestimates by 8.8 +/- 5.8% the maximal diastolic BP.
Resumo:
Volitional animal resistance training constitutes an important approach to modeling human resistance training. However, the lack of standardization protocol poses a frequent impediment to the production of skeletal muscle hypertrophy and the study of related physiological variables (i.e., cellular damage/inflammation or metabolic stress). Therefore, the purposes of the present study were: (1) to test whether a long-term and low frequency experimental resistance training program is capable of producing absolute increases in muscle mass; (2) to examine whether cellular damage/inflammation or metabolic stress is involved in the process of hypertrophy. In order to test this hypothesis, animals were assigned to a sedentary control (C, n = 8) or a resistance trained group (RT, n = 7). Trained rats performed 2 exercise sessions per week (16 repetitions per day) during 12 weeks. Our results demonstrated that the resistance training strategy employed was capable of producing absolute mass gain in both soleus and plantaris muscles (12%, p<0.05). Furthermore, muscle tumor necrosis factor (TNF-alpha) protein expression (soleus muscle) was reduced by 24% (p<0.01) in trained group when compared to sedentary one. Finally, serum creatine kinase (CK) activity and serum lactate concentrations were not affected in either group. Such information may have practical applications if reproduced in situations where skeletal muscle hypertrophy is desired but high mechanical stimuli of skeletal muscle and inflammation are not. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
1. Postexercise hypotension (PEH) plays an important role in the non-pharmacological treatment of hypertension. It is characterized by a decrease in blood pressure (BP) after a single bout of exercise in relation to pre-exercise levels. 2. The present study investigated the effect of a single session of resistance exercise, as well as the effect of nitric oxide (NO) and the autonomic nervous system (ANS), in PEH in spontaneously hypertensive rats (SHR). 3. Catheters were inserted into the left carotid artery and left jugular vein of male SHR (n = 37) for the purpose of measuring BP or heart rate (HR) and drug or vehicle administration, respectively. Haemodynamic measurements were made before and after acute resistance exercise. The roles of NO and the ANS were investigated by using N(G)-nitro-L-arginine methyl ester (L-NAME; 15 mg/kg, i.v.) and hexamethonium (20 mg/kg, i.v.) after a session of acute resistance exercise. 4. Acute resistance exercise promoted a pronounced reduction in systolic and diastolic BP (-37 +/- 1 and -8 +/- 1 mmHg, respectively; P < 0.05), which was suppressed after treatment with L-NAME. The reduction in systolic BP caused by exercise (-37 +/- 1 mmHg) was not altered by the administration of hexamethonium (-38 +/- 2 mmHg; P > 0.05). After exercise, the decrease in diastolic BP was greater with hexamethonium (-26 +/- 1 mmHg; P < 0.05) compared with the decrease caused by exercise alone. 5. The results suggest that acute resistance exercise has an important hypotensive effect on SHR and that NO plays a crucial role in this response.
Resumo:
The present study investigated the effects of 8 week of resistance training (RT) on hemodynamic and ventricular function on cardiac myosin ATPase activity, and on contractility of papillary muscles of rats. Groups: control (CO), electrically stimulated (ES), trained at 60% (TR 60%) and 75% of one repetition maximum (1RM) (TR 75%). Exercise protocol: 5 sets of 12 repetitions at 60 and 75% of 1RM, 5 times per week. The CO and ES groups had similar values for parameters analyzed (P > 0.05). Blood pressure (BP), heart rate (13%), left ventricle systolic pressure (LVSP 13%) decreased and cardiac myosin ATPase activity increased in the TR 75% group (90%, P < 0.05). The contractile performance of papillary muscles increased in trained rats (P < 0.05). Eight weeks of RT was associated with lowering of resting BP, heart rate and LVSP, improvements in contractility of the papillary muscle and an increase of cardiac myosin ATPase activity in rats.