774 resultados para Resilient modulus


Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Little is known on the occurrence and magnitude of faster than normal (catch-up) growth in response to periods of undernutrition in the wild, and the extent to which different body structures compensate and over what timescales is poorly understood. 2. We investigated catch-up growth in nestling Alpine Swifts, Apus melba, by comparing nestling growth trajectories in response to a naturally occurring 1-week period of inclement weather and undernutrition with growth of nestlings reared in a good year. 3. In response to undernutrition, nestlings exhibited a hierarchy of tissues preservation and compensation, with body mass being restored quickly after the end of the period of undernutrition, acceleration of skeletal growth occurring later in development, and compensation in wing length occurring mostly due to a prolongation of growth and delayed fledging. 4. The effect of undernutrition and subsequent catch-up growth was age-dependent, with older nestlings being more resilient to undernutrition, and in turn having less need to compensate later in the development. 5. This shows that young in a free-living bird population can compensate in body mass and body size for a naturally occurring period of undernutrition, and that the timing and extent of compensation varies with age and between body structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The feasibility of substituting fibercomposite (FC) (thermoset) pavement dowels for steel pavement dowels was investigated in this research project. Load transfer capacity, flexural capacity, and material properties were examined. The objectives of Part 1 of this final report included the shear behavior and strength deformations of FC dowel bars without aging. Part 2 will contain the aging effects. This model included the effects of modulus of elasticity for the pavement dowel and concrete, dowel diameter, subgrade stiffness, and concrete compressive strength. An experimental investigation was carried out to establish the modulus of dowel support which is an important parameter for the analysis of dowels. The experimental investigation included measured deflections, observed behavioral characteristics, and failure mode observations. An extensive study was performed on various shear testing procedures. A modified Iosipescu shear method was selected for the test procedure. Also, a special test frame was designed and fabricated for this procedure. The experimental values of modulus of support for shear and FC dowels were used for arriving at the critical stresses and deflections for the theoretical model developed. Different theoretical methods based on analyses suggested by Timoshenko, Friberg, Bradbury, and Westergaard were studied and a comprehensive theoretical model was developed. The fibercomposite dowels were found to provide strengths and behavioral characteristics that appear promising as a potential substitute for steel dowels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Images of myocardial strain can be used to diagnose heart disease, plan and monitor treatment, and to learn about cardiac structure and function. Three-dimensional (3D) strain is typically quantified using many magnetic resonance (MR) images obtained in two or three orthogonal planes. Problems with this approach include long scan times, image misregistration, and through-plane motion. This article presents a novel method for calculating cardiac 3D strain using a stack of two or more images acquired in only one orientation. The zHARP pulse sequence encodes in-plane motion using MR tagging and out-of-plane motion using phase encoding, and has been previously shown to be capable of computing 3D displacement within a single image plane. Here, data from two adjacent image planes are combined to yield a 3D strain tensor at each pixel; stacks of zHARP images can be used to derive stacked arrays of 3D strain tensors without imaging multiple orientations and without numerical interpolation. The performance and accuracy of the method is demonstrated in vitro on a phantom and in vivo in four healthy adult human subjects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quality management concrete allows the contractor to develop the mix design for the portland cement concrete. This research was initiated to gain knowledge about contractor mix designs. An experiment was done to determine the variation in cylinders, beams, and cores that could be used to test the strength of the contractor's mix. In addition, the contractor's cylinder strengths and gradations were analyzed for statistical stability and process capability. This research supports the following conclusions: (1) The mold type used to cast the concrete cylinders had an effect on the compressive strength of the concrete. The 4.5-in. by 9-in. (11.43-cm by 22.86-cm) cylinders had lower strength at a 95% confidence interval than the 4-in. by 8-in. (10.16-cm by 20.32-cm) and 6-in. by 12-in. (15.24-cm by 30.48-cm) cylinders. (2) The low vibration consolidation effort had the lowest strength of the three consolidation efforts. In particular, an interaction occurred between the low vibration effort and the 4.5-in. by 9-in. (11.43-cm by 22.86-cm) mold. This interaction produced very low compressive strengths when compared with the other consolidation efforts. (3) A correlation of 0.64 R-squared was found between the 28 day cylinder and 28 day compressive strengths. (4) The compressive strength results of the process control testing were not in statistical control. The aggregate gradations were mostly in statistical control. The gradation process was capable of meeting specification requirements. However, many of the sieves were off target. (5) The fineness modulus of the aggregate gradations did not correlate well with the strength of the concrete. However, this is not surprising considering that the gradation tests and the strength tests did not represent the same material. In addition, the concrete still has many other variables that will affect its strength that were not controlled.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The major objective of this research project was to investigate how Iowa fly ashes influenced the chemical durability of portland cement based materials. Chemical durability has become an area of uncertainty because of the winter application of deicer salts (rock salts) that contain a significant amount of sulfate impurities. The sulfate durability testing program consisted of monitoring portland cement-fly ash paste, mortar and concrete test specimens that had been subjected to aqueous solutions containing various concentrations of salts (both sulfate and chloride). The paste and mortar specimens were monitored for length as a function of time. The concrete test specimens were monitored for length, relative dynamic modulus and mass as a function of time. The alkali-aggregate reactivity testing program consisted of monitoring the expansion of ASTM C311 mortar bar specimens that contained three different aggregates (Pyrex glass, Oreapolis and standard Ottawa sand). The results of the sulfate durability study indicated that the paste and concrete test specimens tended to exhibit surface spalling but only very slow expansive tendencies. This suggested that the permeability of the test specimens was controlling the rate of deterioration. Concrete specimens are still being monitored because the majority of the test specimens have expanded less than 0.05%; hence, this makes it difficult to estimate the service life of the concrete test specimens or to quantify the performance of the different fly ashes that were used in the study. The results of the mortar bar studies indicated that the chemical composition of the various fly ashes did have an influence on their sulfate resistance. Typically, Clinton and Louisa fly ashes performed the best, followed by the Ottumwa, Neal 4 and then Council Bluffs fly ashes. Council Bluffs fly ash was the only fly ash that consistently reduced the sulfate resistance of the many different mortar specimens that were investigated during this study. None of the trends that were observed in the mortar bar studies have yet become evident in the concrete phase of this project. The results of the alkali-aggregate study indicated that the Oreapolis aggregate is not very sensitive to alkali attack. Two of the fly ashes, Council Bluffs and Ottumwa, tended to increase the expansion of mortar bar specimens that contained the Oreapolis aggregate. However, it was not clear if the additional expansion was due to the alkali content of the fly ash, the periclase content of the fly ash or the cristobalite content of the fly ash, since all three of these factors have been found to influence the test results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The large volume of traffic on the interstate system makes it difficult to make pavement repairs. The maintenance crew needs 4-5 hours to break out the concrete to be replaced and prepare the hole for placing new concrete. Because of this it is usually noon before the patch can be placed. Since it is desirable to remove the barricades before dark there are only 7-8 hours for the concrete to reach the required strength. There exists a need for a concrete that can reach the necessary strength (modulus of rupture = 500 psi) in 7-8 hours. The purpose of this study is to determine if type III cement and/or an accelerator can be used in an M-4 mix to yield a fast setting patch with very little shrinkage. It is recognized that calcium chloride is a corrosive material and may therefore have detrimental effects upon the reinforcing steel. The study of these effects, however, is beyond the scope of this investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report is one of two products for this project with the other being a design guide. This report describes test results and comparative analysis from 16 different portland cement concrete (PCC) pavement sites on local city and county roads in Iowa. At each site the surface conditions of the pavement (i.e., crack survey) and foundation layer strength, stiffness, and hydraulic conductivity properties were documented. The field test results were used to calculate in situ parameters used in pavement design per SUDAS and AASHTO (1993) design methodologies. Overall, the results of this study demonstrate how in situ and lab testing can be used to assess the support conditions and design values for pavement foundation layers and how the measurements compare to the assumed design values. The measurements show that in Iowa, a wide range of pavement conditions and foundation layer support values exist. The calculated design input values for the test sites (modulus of subgrade reaction, coefficient of drainage, and loss of support) were found to be different than typically assumed. This finding was true for the full range of materials tested. The findings of this study support the recommendation to incorporate field testing as part of the process to field verify pavement design values and to consider the foundation as a design element in the pavement system. Recommendations are provided in the form of a simple matrix for alternative foundation treatment options if the existing foundation materials do not meet the design intent. The PCI prediction model developed from multi-variate analysis in this study demonstrated a link between pavement foundation conditions and PCI. The model analysis shows that by measuring properties of the pavement foundation, the engineer will be able to predict long term performance with higher reliability than by considering age alone. This prediction can be used as motivation to then control the engineering properties of the pavement foundation for new or re-constructed PCC pavements to achieve some desired level of performance (i.e., PCI) with time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Asphalt pavements suffer various failures due to insufficient quality within their design lives. The American Association of State Highway and Transportation Officials (AASHTO) Mechanistic-Empirical Pavement Design Guide (MEPDG) has been proposed to improve pavement quality through quantitative performance prediction. Evaluation of the actual performance (quality) of pavements requires in situ nondestructive testing (NDT) techniques that can accurately measure the most critical, objective, and sensitive properties of pavement systems. The purpose of this study is to assess existing as well as promising new NDT technologies for quality control/quality assurance (QC/QA) of asphalt mixtures. Specifically, this study examined field measurements of density via the PaveTracker electromagnetic gage, shear-wave velocity via surface-wave testing methods, and dynamic stiffness via the Humboldt GeoGauge for five representative paving projects covering a range of mixes and traffic loads. The in situ tests were compared against laboratory measurements of core density and dynamic modulus. The in situ PaveTracker density had a low correlation with laboratory density and was not sensitive to variations in temperature or asphalt mix type. The in situ shear-wave velocity measured by surface-wave methods was most sensitive to variations in temperature and asphalt mix type. The in situ density and in situ shear-wave velocity were combined to calculate an in situ dynamic modulus, which is a performance-based quality measurement. The in situ GeoGauge stiffness measured on hot asphalt mixtures several hours after paving had a high correlation with the in situ dynamic modulus and the laboratory density, whereas the stiffness measurement of asphalt mixtures cooled with dry ice or at ambient temperature one or more days after paving had a very low correlation with the other measurements. To transform the in situ moduli from surface-wave testing into quantitative quality measurements, a QC/QA procedure was developed to first correct the in situ moduli measured at different field temperatures to the moduli at a common reference temperature based on master curves from laboratory dynamic modulus tests. The corrected in situ moduli can then be compared against the design moduli for an assessment of the actual pavement performance. A preliminary study of microelectromechanical systems- (MEMS)-based sensors for QC/QA and health monitoring of asphalt pavements was also performed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Iowa Department of Transportation (DOT) is responsible for approximately 4,100 bridges and structures that are a part of the state’s primary highway system, which includes the Interstate, US, and Iowa highway routes. A pilot study was conducted for six bridges in two Iowa river basins—the Cedar River Basin and the South Skunk River Basin—to develop a methodology to evaluate their vulnerability to climate change and extreme weather. The six bridges had been either closed or severely stressed by record streamflow within the past seven years. An innovative methodology was developed to generate streamflow scenarios given climate change projections. The methodology selected appropriate rainfall projection data to feed into a streamflow model that generated continuous peak annual streamflow series for 1960 through 2100, which were used as input to PeakFQ to estimate return intervals for floods. The methodology evaluated the plausibility of rainfall projections and credibility of streamflow simulation while remaining consistent with U.S. Geological Survey (USGS) protocol for estimating the return interval for floods. The results were conveyed in an innovative graph that combined historical and scenario-based design metrics for use in bridge vulnerability analysis and engineering design. The pilot results determined the annual peak streamflow response to climate change likely will be basin-size dependent, four of the six pilot study bridges would be exposed to increased frequency of extreme streamflow and would have higher frequency of overtopping, the proposed design for replacing the Interstate 35 bridges over the South Skunk River south of Ames, Iowa is resilient to climate change, and some Iowa DOT bridge design policies could be reviewed to consider incorporating climate change information.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This is the second part of the final report submitted to the Iowa Department of Transportation. Part 1 contained a comparison of unaged fiber composite and steel dowels and derivation of the appropriate theoretical model for analyzing the results. Part 2 of this final report covers the theoretical and experimental models for accelerated aging of fiber composite reinforcing bars and dowels cast in a concrete environment. Part 2 contains results from testing of unaged and aged fiber composite dowels and steel dowels, in addition to unaged and aged fiber composite reinforcing bars. Additional tests have been performed on unaged dowels (both steel and fibercomposite) to verify results from Part 1 and to keep the testing program consistent. Slight modifications have been made to the dowel specimens presented in Part 1. These modifications are noted in the Section 3.4 of this report. The flexural modulus of elasticity for the FC dowel bar given in Part 1 of the final report (Table 3. 2) was for the incorrect structural shape (non-circular cross section). The value is corrected and given in Part 2 of the final report (Table 3.4 for the.modulus of elasticity supplied by the manufacturer, and Tables 3. 5 and 3. 6 for experimentally determined modulus of elasticities) • The value in Part 1 was not used for any analysis of the FC dowel bars.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The atomic force microscope is a convenient tool to probe living samples at the nanometric scale. Among its numerous capabilities, the instrument can be operated as a nano-indenter to gather information about the mechanical properties of the sample. In this operating mode, the deformation of the cantilever is displayed as a function of the indentation depth of the tip into the sample. Fitting this curve with different theoretical models permits us to estimate the Young's modulus of the sample at the indentation spot. We describe what to our knowledge is a new technique to process these curves to distinguish structures of different stiffness buried into the bulk of the sample. The working principle of this new imaging technique has been verified by finite element models and successfully applied to living cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Iowa DOT has been using blended cements in ternary mixes since 1999. Use of these supplementary cementitious materials gives concrete with higher strengths and much lower permeability. Use of these materials has been incorporated for use in High Performance Concrete (HPC) decks to achieve lower permeability and thus long term performance. Since we have been using these materials in paving, it would be informative to determine what concrete pavement properties are enhanced as related to high performance concrete. The air void system was excellent at a spacing factor of 0.0047 in (0.120 mm). AVA spacing factor results are much higher than the hardened air void analysis. Although only 3 samples were tested between the image analysis air content and the RapidAir457, there is pretty good agreement between those test methods. Air void analysis indicates that excessive vibration was not required to place the concrete. Vibration was well within the specification limits with an average of 6683 vpm’s with a standard deviation of 461. Overall ride of the project was very good. The average smoothness for the project was 2.1 in/mile (33.8 mm/km). The International Roughness Index (IRI) was 81 in/mi (1.29 m/km). The compressive strength was 6260 psi (43.2 MPa) at 28 days and 6830 (47.1 MPa) at 56 days. The modulus of rupture by third point loading (MOR-TPL) tested at 28 days was 660 psi (4.55 MPa). The AASHTO T277 rapid chloride permeability results at 28 days using the Virginia cure method correlate fairly well with the 56 and 90 day results with standard curing. The Virginia cure method 28 day results were 2475 coulombs and the standard cure 56 and 90 day test results were 2180 and 2118, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cold in-place recycling (CIR) has become an attractive method for rehabilitating asphalt roads that have good subgrade support and are suffering distress related to non-structural aging and cracking of the pavement layer. Although CIR is widely used, its use could be expanded if its performance were more predictable. Transportation officials have observed roads that were recycled under similar circumstances perform very differently for no clear reason. Moreover, a rational mix design has not yet been developed, design assumptions regarding the structural support of the CIR layer remain empirical and conservative, and there is no clear understanding of the cause-effect relationships between the choices made during the design/construction process and the resulting performance. The objective of this project is to investigate these relationships, especially concerning the age of the recycled pavement, cumulative traffic volume, support conditions, aged engineering properties of the CIR materials, and road performance. Twenty-four CIR asphalt roads constructed in Iowa from 1986 to 2004 were studied: 18 were selected from a sample of roads studied in a previous research project (HR-392), and 6 were selected from newer CIR projects constructed after 1999. This report describes the results of comprehensive field and laboratory testing for these CIR asphalt roads. The results indicate that the modulus of the CIR layer and the air voids of the CIR asphalt binder were the most important factors affecting CIR pavement performance for high-traffic roads. For low-traffic roads, the wet indirect tensile strength significantly affected pavement performance. The results of this research can help identify changes that should be made with regard to design, material selection, and construction in order to improve the performance and cost-effectiveness of future recycled roads.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research project covered a wide range of activities that allowed researchers to understand the relationship between stability, pavement distress, and recycled portland cement concrete (RPCC) subbase aggregate materials. Detailed laboratory and field tests, including pavement distress surveys, were conducted at 26 sites in Iowa. Findings show that specific gravities of RPCC are lower than those of crushed limestone. RPCC aggregate material varies from poorly or well-graded sand to gravel. A modified Micro-Deval test procedure showed that abrasion losses of virgin aggregate materials were within the maximum Micro-Deval abrasion loss of 30% recommended by ASTM D6028-06. Micro-Deval abrasion loss of RPCC aggregate materials, however, was much higher than that of virgin materials and exceeded 30% loss. Modulus of elasticity of RPCC subbase materials is high but variable. RPCC subbase layers normally have low permeability. The pavement surfaces for both virgin and RPCC subbase across Iowa were evaluated to fulfill the objectives of this study related to field evaluation. Visual distress surveys were conducted to gather the detailed current pavement condition information including the type, extent, and severity of the pavement distresses. The historical pavement condition information for the surveyed field sections was extracted from the Iowa DOT's Pavement Management Information System (PMIS). The current surface condition of existing field pavements with RPCC subbase was compared with the virgin aggregate subbase sections using two different approaches. The changes in pavement condition indices (PCI and IRI) with time for both types of pavements (subbases) were compared.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pavements are subjected to different stresses during their design lives. A properly designed pavement will perform adequately during its design life, and the distresses will not exceed the allowable limits; however, there are several factors that can lead to premature pavement failure. One such factor is moisture sensitivity. AASHTO T 283 is the standard test used in the moisture susceptibility evaluation of asphalt mixtures, but the results of the test are not very representative of the expected behavior of asphalt mixtures. The dynamic modulus test measures a fundamental property of the mixture. The results of the dynamic modulus test can be used directly in the Mechanistic-Empirical Pavement Design Guide (MEPDG) and are considered a very good representation of the expected field performance of the mixture. Further research is still needed to study how the dynamic modulus results are affected by moisture. The flow number test was studied in previous research as a candidate test for moisture-susceptibility evaluation, but the results of that research were not favorable. This research has four main objectives. The first objective of this research is to evaluate the usefulness of the dynamic modulus and flow number tests in moisture-susceptibility evaluation. The second objective is to compare the results to those achieved using the AASHTO T 283 test. The third objective is to study the effect of different methods of sample conditioning and testing conditions. The fourth objective of the research is to study the variability in the test results.