916 resultados para Reputation for Toughness
Resumo:
In this paper, a finite element analysis of steady-state dynamic crack growth under Mode I, plane strain, small-scale yielding conditions is performed in a rate dependent plastic material characterized by the over-stress model. The main objective of the paper is to obtain theoretically the dependence of dynamic fracture toughness on crack speed. Crack propagation due to a ductile (micro-void) mechanism or a brittle (cleavage) mechanism, as well as transition from one mode to another are considered. The conversion from ductile to brittle has been observed experimentally but has received very little attention using analytical methods. Local fracture criteria based on strains and stresses are used to describe ductile and brittle fracture mechanisms. The results obtained in this paper are in general agreement with micro-structural observations of mode conversion during fracture initiation. Finally, the particular roles played by material rate sensitivity and inertia are examined in some detail.
Resumo:
Diglycidyl ether–bisphenol-A-based epoxies toughened with various levels (0–12%) of chemically reacted liquid rubber, hydroxyl-terminated poly(butadiene-co-acrylonitrile) (HTBN) were studied for some of the mechanical and thermal properties. Although the ultimate tensile strength showed a continuous decrease with increasing rubber content, the toughness as measured by the area under the stress-vs.-strain curve and flexural strength reach a maximum around an optimum rubber concentration of 3% before decreasing. Tensile modulus was found to increase for concentrations below 6%. The glass transition temperature Tg as measured by DTA showed no variation for the toughened formulations. The TGA showed no variations in the pattern of decomposition. The weight losses for the toughened epoxies at elevated temperatures compare well with that of the neat epoxy. Scanning electron microscopy revealed the presence of a dual phase morphology with the spherical rubber particles precipitating out in the cured resin with diameter varying between 0.33 and 6.3 μm. In contrast, a physically blended rubber–epoxy showed much less effect towards toughening with the precipitated rubber particles of much bigger diameter (0.6–21.3 μm).
Resumo:
A review of the research work that has been carried out thus far relating the casting and heat treatment variables to the structure and mechanical properties of Al–7Si–Mg (wt-%) is presented here. Although specifications recommend a wide range of magnesium contents and a fairly high content of iron, a narrow range of magnesium contents, closer to either the upper or lower specified limits depending on the properties desired, and a low iron content will have to be maintained to obtain optimum and consistent mechanical properties. A few studies have revealed that the modification of eutectic silicon slightly increases ductility and fracture toughness and also that the effect of modification is predominant at low iron content. Generally, higher solidification rates give superior mechanical properties. Delayed aging (the time elapsed between quenching and artificial aging during precipitation hardening) severely affects the strength of the alloy. The mechanism of delayed aging can be explained on the basis of Pashley's kinetic model. It has been reported that certain trace additions (cadmium, indium, tin, etc.) neutralise the detrimental effect of delayed aging. In particular, it should be noted that delayed aging is not mentioned in any of the specifications. With reference to the mechanism by which trace additions neutralise the detrimental effect of delayed aging, various hypotheses have been postulated, of which impurity–vacancy interaction appears to be the most widely accepted.
Resumo:
Hydroxyapatite(OHAp)-based ceramic composites with added ZrO2 have been prepared both by sintering at 1400 °C and by hot isostatic pressing (HIP) at 1450 °C and 140 MPa pressure (argon atmosphere). The development of the crystalline phases and the microstructure of the composites have been examined using X-ray diffraction, electron microscopy, infrared and magic-angle spinning nuclear magnetic resonance (MASNMR) spectroscopic techniques. The fracture toughness and biocompatibility of the composites have also been studied. The effect of the addition of CeO2- and Y2O3-stabilized ZrO2 and of simple monoclinic ZrO2 to the initial physical mixture, on the structure and properties of the resulting composites has been investigated. In most of the sintered or HIP samples, the OHAp decomposes into tricalcium phosphate (β-TCP). CaO, which forms as a product of decomposition, dissolves completely in ZrO2 and stabilizes the latter in its cubic/tetragonal phase. Presence of the β-TCP phase in the product seems to be the result of a structural synergistic effect of hexagonal OHAp. Two structurally distinct orthophosphate groups have been identified in the composites by MASNMR of 31P and attributed to decomposition products of OHAp at higher temperatures. The composites possess high KIC values (2–3 times higher than that of pure OHAp). Decomposition of hydroxyapatite gives rise to differences in microstructure between HIP and simply sintered composites although fracture toughness values are similar in magnitude indicating the presence of several toughening mechanisms. The in vitro SP2-O cell test suggests that these composites possess good biocompatibility. The combination of good biocompatibility, desirable microstructure and easy availability of initial reactants indicates that the simply sintered composite of OHAp and monoclinic ZrO2(ZAP-30) appears to be the most suitable for prosthetic applications.
Resumo:
The mode I and mode II fracture toughness and the critical strain energy release rate for different concrete-concrete jointed interfaces are experimentally determined using the Digital Image Correlation technique. Concrete beams having different compressive strength materials on either side of a centrally placed vertical interface are prepared and tested under three-point bending in a closed loop servo-controlled testing machine under crack mouth opening displacement control. Digital images are captured before loading (undeformed state) and at different instances of loading. These images are analyzed using correlation techniques to compute the surface displacements, strain components, crack opening and sliding displacements, load-point displacement, crack length and crack tip location. It is seen that the CMOD and vertical load-point displacement computed using DIC analysis matches well with those measured experimentally.
Resumo:
Minor addition of B to the Ti-6Al-4V alloy reduces the prior beta grain size by more than an order of magnitude. TiB formed in-situ in the process has been noted to decorate the grain boundaries. This microstructural modification influences the mechanical behavior of the Ti-6Al-4V alloy significantly. In this paper, an overview of our current research on tensile properties, fracture toughness as well as notched and un-notched fatigue properties of Ti-6Al-4V-xB with x varying between 0.0 to 0.55 wt.% is presented. A quantitative relationship between the microstructural length scales and the various mechanical properties have been developed. Moreover, the effect of the presence of hard and brittle TiB has also been studied.
Resumo:
A simple one dimensional inertial model is presented for transient response analysis of notched beams under impact, and extracting dynamic initiation toughness values. The model includes the effects of striker mass interactions, and contact deformations of the beam. Displacement time history of the striker mass is applied to the model as forcing function. The model is validated by comparison with the experimental investigation on ductile aluminium 6061 alloy and brittle polymer, PMMA.
Resumo:
It is well known that fatigue in concrete causes excessive deformations and cracking leading to structural failures. Due to quasi-brittle nature of concrete and formation of a fracture process zone, the rate of fatigue crack growth depends on a number of parameters, such as, the tensile strength, fracture toughness, loading ratio and most importantly the structural size. In this work, an analytical model is proposed for estimating the fatigue crack growth in concrete by using the concepts of dimensional analysis and including the above parameters. Knowing the governed and the governing parameters of the physical problem and by using the concepts of self-similarity, a relationship is obtained between different parameters involved. It is shown that the proposed fatigue law is able to capture the size effect in plain concrete and agrees well with different experimental results. Through a sensitivity analysis, it is shown that the structural size plays a dominant role followed by loading ratio and the initial crack length in fatigue crack propagation. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this work, dynamic crack growth along a ductile-brittle interface under anti-plane strain conditions is studied. The ductile solid is taken to obey the J(2) flow theory of plasticity with linear isotropic strain hardening, while the substrate is assumed to exhibit linear elastic behavior. Firstly, the asymptotic near-tip stress and velocity fields are derived. These fields are assumed to be variable-separable with a power singularity in the radial coordinate centered at the crack tip. The effects of crack speed, strain hardening of the ductile phase and mismatch in elastic moduli of the two phases on the singularity exponent and the angular functions are studied. Secondly, full-field finite element analyses of the problem under small-scale yielding conditions are performed. The validity of the asymptotic fields and their range of dominance are determined by comparing them with the results of the full-field finite element analyses. Finally, theoretical predictions are made of the variations of the dynamic fracture toughness with crack velocity. The influence of the bi-material parameters on the above variation is investigated.
Resumo:
In this paper, an overview of some recent computational studies by the authors on ductile crack initiation under mode I, dynamic loading is presented. In these studies, a large deformation finite element procedure is employed along with the viscoplastic version of the Gurson constitutive model that accounts for the micro-mechanical processes of void nucleation, growth and coalescence. A three-point bend fracture specimen subjected to impact, and a single edge notched specimen loaded by a tensile stress pulse are analysed. Several loading rates are simulated by varying the impact speed or the rise time and magnitude of the stress pulse. A simple model involving a semi-circular notch with a pre-nucleated circular hole situated ahead of it is considered. The growth of the hole and its interaction with the notch tip, which leads to plastic strain and porosity localization in the ligament connecting them, is simulated. The role of strain-rate dependence on ductile crack initiation at high loading rates, and the specimen geometry effect on the variation of dynamic fracture toughness with loading rate are Investigated.
Resumo:
Hardened concrete is a three-phase composite consisting of cement paste, aggregate and interface between cement paste and aggregate. The interface in concrete plays a key role on the overall performance of concrete. The interface properties such as deformation, strength, fracture energy, stress intensity and its influence on stiffness and ductility of concrete have been investigated. The effect of composition of cement, surface characteristics of aggregate and type of loading have been studied. The load-deflection response is linear showing that the linear elastic fracture mechanics (LEFM) is applicable to characterize interface. The crack deformation increases with large rough aggregate surfaces. The strength of interface increases with the richness of concrete mix. The interface fracture energy increases as the roughness of the aggregate surface increases. The interface energy under mode II loading increases with the orientation of aggregate surface with the direction of loading. The chemical reaction between smooth aggregate surface and the cement paste seems to improve the interface energy. The ductility of concrete decreases as the surface area of the strong interface increases. The fracture toughness (stress intensity factor) of the interface seems to be very low, compared with hardened cement paste, mortar and concrete.
Resumo:
This study presents the results of an experimental and analytical comparison of the flexural behavior of a high-strength concrete specimen (no conventional reinforcement) with an average plain concrete cube strength of nearly 65 MPa and containing trough shape steel fibers. Trough shape steel fibers with a volume fraction ranging from 0 to 1.5% and having a constant aspect ratio of 80 have been used in this study. Increased toughness and a more ductile stress-strain response were observed with an increase in fiber content, when the fibers were distributed over the full/partial depth of the beam cross section. Based on the tests, a robust analytical procedure has been proposed to establish the required partial depth to contain fiber-reinforced concrete (FRC) so as to obtain the flexural capacity of a member with FRC over the full depth. It is expected that this procedure will help designers in properly estimating the required partial depth of fibers in composite sections for specific structural applications. Empirical and mechanistic relations have also been proposed in this study to establish the load-deflection behavior of high-strength FRC.
Resumo:
The objectives of this paper are to examine the loss of crack tip constraint in dynamically loaded fracture specimens and to assess whether it can lead to enhancement in the fracture toughness at high loading rates which has been observed in several experimental studies. To this end, 2-D plane strain finite element analyses of single edge notched (tension) specimen and three point bend specimen subjected to time varying loads are performed. The material is assumed to obey the small strain J(2) flow theory of plasticity with rate independent behaviour. The results demonstrate that a valid J-Q field exists under dynamic loading irrespective of the crack length and specimen geometry. Further, the constraint parameter Q becomes strongly negative at high loading rates, particularly in deeply cracked specimens. The variation of dynamic fracture toughness K-dc with stress intensity rate K for cleavage cracking is predicted using a simple critical stress criterion. It is found that inertia-driven constraint loss can substantially enhance K-dc for (K) over dot > 10(5) MPa rootm/s.
Resumo:
Embrittlement of a bulk La-based metallic glass due to isothermal and isochronal annealing below the T-g was investigated. Results show that the impact toughness decreases with increasing annealing time or temperature, accompanied by a change in fracture morphology. Reasons for this are discussed in terms of structural relaxation. (C) 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
An experimental investigation on the fracture properties of high-strength concrete (HSC) is reported. Three-point bend beam specimens of size 100 x 100 x 500 mm were used as per RILEM-FMC 50 recommendations. The influence of maximum size of coarse aggregate on fracture energy, fracture toughness, and characteristic length of concrete has been studied. The compressive strength of concrete ranged between 40 and 75 MPa. Relatively brittle fracture behavior was observed with the increase in compressive strength. The load-CMOD relationship is linear in the ascending portion and gradually drops off after the peak value in the descending portion. The length of the tail end portion of the softening curve increases as the size of coarse aggregate increases. The fracture energy increases as the maximum size of coarse aggregate and compressive strength of concrete increase. The characteristic length of concrete increases with the maximum size of coarse aggregate and decreases as the compressive strength increases, (C) 2002 Elsevier Science Ltd. All rights reserved.