914 resultados para Regional Blood Flow
Resumo:
Introducción. En Colombia, el 80% de los pacientes con enfermedad renal crónica en hemodiálisis tienen fístula arteriovenosa periférica (FAV) que asegura el flujo de sangre durante la hemodiálisis (1), la variabilidad en el flujo de sangre en el brazo de la FAV hacia la parte distal, puede afectar la lectura de la oximetría de pulso (SpO2) (2), llevando a la toma de decisiones equivocadas por el personal de salud. El objetivo de este estudio es aclarar si existe diferencia entre la SpO2 del brazo de la FAV y el brazo contralateral. Materiales y métodos. Se realizó un estudio de correlación entre los valores de SpO2 del brazo con FAV contra el brazo sin FAV, de 40 pacientes que asistieron a hemodiálisis. La recolección de los datos se llevó a cabo, con un formato que incluyó el resultado de la pulsioximetria y variables asociadas, antes, durante y después de la hemodiálisis. Se comparó la mediana de los deltas de las diferencias con pruebas estadísticas T Student – Mann Whitney, aceptando un valor significativo de p < 0,05. Resultados. No se encontraron diferencias estadísticamente significativas de la SpO2 entre el brazo con FAV y el brazo sin FAV, antes, durante y después de la diálisis, sin embargo si se apreció una correlación positiva estadísticamente significativa. Conclusiones. Se encontró correlación positiva estadísticamente significativa, donde no hubo diferencias en el resultado la pulsioximetría entre el brazo con FAV y brazo sin FAV, por lo tanto es válido tomar la pulsioximetría en cualquiera de los brazos.
Resumo:
Autistic spectrum disorder (ASD) is characterised by qualitative alterations in reciprocal social interactions. Some recent studies show alterations in gaze patterns during social perception and rest-functional abnormalities in the ‘social brain network’. This study investigated: i) social perception gaze patterns in children with ASD and controls, ii) the relationship between autism clinical severity and social perception gaze patterns, iii) the relationship between resting cerebral blood flow (rCBF) and social perception gaze patterns. Methods: Nine children with ASD and 9 children with typical development were studied. Eye-tracking was used to detect gaze patterns during presentation of stimuli depicting social scenes. Autism clinical severity was established using the Autism Diagnostic Interview Revised (ADI-R). Arterial spin labelling MRI was used to quantify rCBF. Results: The ASD group looked less at social regions and more at non-social regions than controls. No significant correlation was found between ASD clinical severity and social perception gaze patterns. In the ASD group, gaze behaviour was related to rCBF in the temporal lobe regions at trend level. Positive correlations were found between temporal rCBF and gaze to the face region, while negative correlations were found between temporal rCBF and gaze to non-social regions. Conclusions: These preliminary results suggest that social perception gaze patterns are altered in children with ASD, and could be related to temporal rCBF.
Resumo:
A Fluxometria por Laser Doppler (LDF) é uma técnica não invasiva usada para medir o fluxo microvascular da pele humana. No fluxo é possível isolar componentes oscilatórias em gamas de frequências características que se encontram relacionadas com as actividades cardíaca, respiratória, miogénica, simpática e metabólica. A LDF permite assim estudar a fisiologia do fluxo sanguíneo. Neste trabalho foram realizadas medições de LDF nos tornozelos de 9 mulheres saudáveis numa situação de restrição à perfusão, usando uma braçadeira nos tornozelos. Os dados foram analisados com Transformada de Wavelet e Detrended Fluctuation Analysis (DFA) de modo a estudar os rácios das amplitudes das componentes de Wavelet e os respectivos expoentes . Estes parâmetros foram comparados nas situações de repouso, de restrição à perfusão e de recuperação após remoção da braçadeira. Observou-se que durante a restrição à perfusão houve um aumento significativo dos rácios de amplitude e dos expoentes a para as componentes cardíaca, respiratória e miogénica, o que pode reflectir vasoconstrição. Os parâmetros da componente metabólica apresentaram uma diminuição que se pode relacionar com variações na libertação de NO por parte do endotélio. Após a libertação da braçadeira, os parâmetros das componentes respiratória, miogénica e metabólica retornaram aos valores iniciais. Aanálise combinada de Wavelet com DFAoferece uma nova visão sobre a regulação do fluxo microvascular.
Resumo:
A microcirculação cutânea surgiu, nos últimos anos, como uma alternativa pratica e acessível para o estudo da circulação periférica. Técnicas não-invasivas, como a Fluxometria por Laser Doppler (FLD), a Evaporimetria e a Gasimetria transcutânea em associação a testes de provocação têm transformado a circulação cutânea num atraente modelo de investigação. Este estudo foi aplicado a um grupo de voluntárias jovens saudáveis (n = 8, (21,6 ± 2,6) anos) respirando uma atmosfera de 100 % oxigénio durante 10 minutos. Este teste permitiu-nos avaliar a resposta circulatória na microcirculação do membro inferior. As técnicas de medição incluíram o fluxo sanguíneo local por FLD, a pO2 transcutânea (tc) e a Perda Transepidérmica de Água (PTEA) por evaporimetria. A análise de dados revela que tc-pO2 e FLD se alteraram significativamente durante o teste. Um perfil de evolução recíproca foi registrado para FLD e PTEA, que parece apoiar dados anteriores de que as alterações no fluxo sanguíneo local podem influenciar a função de “barreira” epidérmica. Este modelo parece adequado para caracterizar a microcirculação do membro inferior in vivo.
Resumo:
A dermatite atópica (DA) é um tema importante na dermatologia clínica. Na verdade, a patogénese dessa doença inflamatória crónica da pele, caracterizada principalmente por pele seca e prurido, ainda está longe de ser totalmente compreendida. A fim de saber mais acerca desta complexa doença, ratos Wistar machos e adultos (n = 10) foram utilizados como modelo animal, nos quais o tratamento com acetona (AA) foi comparado com o tratamento com água por 3 dias (AW). No dia 3, uma hora após o último tratamento, a AA mostrou maior perda transepidérmica de água (TEWL), fluxo sanguíneo capilar e reduzida hidratação quando comparada com AW. A análise comportamental mostrou que a acção de coçar foi marcadamente mais frequente no grupo AA (n = 5) quando comparado ao grupo AW (n = 5). Estes resultados justificam a implementação deste modelo animal como uma ferramenta experimental para investigação da AD.
Resumo:
The objective of this work was to construct a dynamic model of hepatic amino acid metabolism in the lactating dairy cow that could be parameterized using net flow data from in vivo experiments. The model considers 22 amino acids, ammonia, urea, and 13 energetic metabolites, and was parameterized using a steady-state balance model and two in vivo, net flow experiments conducted with mid-lactation dairy cows. Extracellular flows were derived directly from the observed data. An optimization routine was used to derive nine intracellular flows. The resulting dynamic model was found to be stable across a range of inputs suggesting that it can be perturbed and applied to other physiological states. Although nitrogen was generally in balance, leucine was in slight deficit compared to predicted needs for export protein synthesis, suggesting that an alternative source of leucine (e.g. peptides) was utilized. Simulations of varying glucagon concentrations indicated that an additional 5 mol/d of glucose could be synthesized at the reference substrate concentrations and blood flows. The increased glucose production was supported by increased removal from blood of lactate, glutamate, aspartate, alanine, asparagine, and glutamine. As glucose Output increased, ketone body and acetate release increased while CO2 release declined. The pattern of amino acids appearing in hepatic vein blood was affected by changes in amino acid concentration in portal vein blood, portal blood flow rate and glucagon concentration, with methionine and phenylalanine being the most affected of essential amino acids. Experimental evidence is insufficient to determine whether essential amino acids are affected by varying gluconeogenic demands. (C) 2004 Published by Elsevier Ltd.
Resumo:
Blood flow and net nutrient fluxes for portal-drained viscera (PDV) and liver ( total splanchnic tissues) were measured at 19 and 9 d prepartum and at 11, 21, 33, and 83 d in milk ( DIM) in 5 multiparous Holstein-Friesian cows. Cows were fed a grass silage-based gestation ration initially and a corn silage-based lactation ration peripartum and postpartum. Meals were fed at 8-h intervals and hourly (n = 8) measures of splanchnic metabolism were started before ( 0730 h and 0830 h) feeding at 0830 h. Dry matter intakes (DMI) at 19 and 9 d prepartum were not different. Metabolism changes measured from 19 to 9 d prepartum were lower arterial insulin and acetate, higher arterial nonesterified fatty acids and increased net liver removal of glycerol. After calving, PDV and liver blood flow and oxygen consumption more than doubled as DMI and milk yield increased, but 85 and 93% of the respective increases in PDV and liver blood flow at 83 DIM had occurred by 11 DIM. Therefore, factors additional to DMI must also contribute to increased blood flow in early lactation. Most postpartum changes in net PDV and liver metabolism could be attributed to increases in DMI and digestion or increased milk yield and tissue energy loss. Glucose release was increasingly greater than calculated requirements as DIM increased, presumably as tissue energy balance increased. Potential contributions of lactate, alanine, and glycerol to liver glucose synthesis were greatest at 11 DIM but decreased by 83 DIM. Excluding alanine, there was no evidence of an increased contribution of amino acids to liver glucose synthesis is required in early lactation. Increased net liver removal of propionate (69%), lactate (20%), alanine (8%), and glycerol (4%) can account for increased liver glucose release in transition cows from 9 d before to 11 d after calving.
Resumo:
A large number of processes are involved in the pathogenesis of atherosclerosis but it is unclear which of them play a rate-limiting role. One way of resolving this problem is to investigate the highly non-uniform distribution of disease within the arterial system; critical steps in lesion development should be revealed by identifying arterial properties that differ between susceptible and protected sites. Although the localisation of atherosclerotic lesions has been investigated intensively over much of the 20th century, this review argues that the factor determining the distribution of human disease has only recently been identified. Recognition that the distribution changes with age has, for the first time, allowed it to be explained by variation in transport properties of the arterial wall; hitherto, this view could only be applied to experimental atherosclerosis in animals. The newly discovered transport variations which appear to play a critical role in the development of adult disease have underlying mechanisms that differ from those elucidated for the transport variations relevant to experimental atherosclerosis: they depend on endogenous NO synthesis and on blood flow. Manipulation of transport properties might have therapeutic potential. Copyright (C) 2004 S. Karger AG, Basel.
Resumo:
LDL aggregates when exposed to even moderate fluid mechanical stresses in the laboratory, yet its half-life in the circulation is 2-3 days, implying that little aggregation occurs. LDL may be protected from aggregation in vivo by components of plasma, or by a qualitative difference in flows. Previous studies have shown that HDL and albumin inhibit the aggregation induced by vortexing. Using a more reproducible method of inducing aggregation and assessing aggregation both spectrophotometrically and by sedimentation techniques, we showed that at physiological concentrations, albumin is the more effective inhibitor, and that aggregation is substantially but not completely inhibited in plasma. Heat denatured and fatty-acid-stripped albumin were more effective inhibitors than normal albumin, supporting the idea that hydrophobic interactions are involved. Aggregation of LDL in a model reproducing several aspects of flow in the circulation was 200-fold slower, but was still inhibited by HDL and albumin, suggesting similar mechanisms are involved. Within the sensitivity of our technique, LDL aggregation did not occur in plasma exposed to these flows.jlr Thus, as a result of the characteristics of blood flow and the inhibitory effects of plasma components, particularly albumin, LDL aggregation is unlikely to occur within the circulation.
Resumo:
Flavonoids exert a multiplicity of neuroprotective actions within the brain, including a potential to protect neurons against injury induced by neurotoxins, an ability to suppress neuroinflammation, and the potential to promote memory, learning and cognitive function. These effects appear to be underpinned by two common processes. Firstly, they interact with critical protein and lipid kinase signalling cascades in the brain leading to an inhibition of apoptosis triggered by neurotoxic species and to a promotion of neuronal survival and synaptic plasticity. Secondly, they induce beneficial effects on the vascular system leading to changes in cerebrovascular blood flow capable of causing angiogenesis, neurogenesis and changes in neuronal morphology. Through these mechanisms, the consumption of flavonoid-rich foods throughout life holds the potential to limit neurodegeneration and to prevent or reverse age-dependent loses in cognitive performance. The intense interest in the development of drugs capable of enhancing brain function means that flavonoids may represent important precursor molecules in the quest to develop of a new generation of brain enhancing drugs.
Resumo:
Evidence Suggests that a group of phytochemicals known as flavonoids are highly effective in reversing age-related declines in neuro-cognitive performance through their ability to interact with the cellular and molecular architecture of the brain responsible for memory and by reducing neuronal loss due to neurodegenerative Processes. In particular, they may increase the number of, and strength of, connections between neurons, via their specific interactions with the ERK and Akt signalling pathways, leading to an increase in neurotrophins Such as BDNF. Concurrently, their effects on the peripheral and Cerebral vascular system may also lead to enhancements in cognitive performance through increased brain blood flow and an ability to initiate neurogenesis in the hippocampus. Finally, they have also been shown to reduce neuronal damage and losses induced by various neurotoxic species and neuroinflammation. Together, these processes act to maintain the number and quality of synaptic connections in the brain. a factor known to be essential for efficient LTP, synaptic plasticity and ultimately the efficient working of memory. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The neuroprotective actions of dietary flavonoids involve a number of effects within the brain, including a potential to protect neurons against injury induced by neurotoxins, an ability to suppress neuroinflammation, and the potential to promote memory, learning and cognitive function. This multiplicity of effects appears to be underpinned by two processes. Firstly, they interact with important neuronal signalling cascades leading to an inhibition of apoptosis triggered by neurotoxic species and to a promotion of neuronal survival and differentiation. These interactions include selective actions on a number of protein kinase and lipid kinase signalling cascades, most notably the PI3K/Akt and MAP kinase pathways which regulate pro-survival transcription factors and gene expression. Secondly, they induce peripheral and cerebral vascular blood flow in a manner which may lead to the induction of angiogenesis, and new nerve cell growth in the hippocampus. Therefore, the consumption of flavonoid-rich foods, such as berries and cocoa, throughout life holds a potential to limit the neurodegeneration associated with a variety of neurological disorders and to prevent or reverse normal or abnormal deteriorations in cognitive performance.
Resumo:
Coronary artery disease is one of the most common heart pathologies. Restriction of blood flow to the heart by atherosclerotic lesions, leading to angina pectoris and myocardial infarction, damages the heart, resulting in impaired cardiac function. Damaged myocardium is replaced by scar tissue since surviving cardiomyocytes are unable to proliferate to replace lost heart tissue. Although narrowing of the coronary arteries can be treated successfully using coronary revascularisation procedures, re-occlusion of the treated vessels remains a significant clinical problem. Cell cycle control mechanisms are key in both the impaired cardiac repair by surviving cardiomyocytes and re-narrowing of treated vessels by maladaptive proliferation of vascular smooth muscle cells. Strategies targeting the cell cycle machinery in the heart and vasculature offer promise both for the improvement of cardiac repair following MI and the prevention of restenosis and bypass graft failure following revascularisation procedures.
Resumo:
There is intense interest in the studies related to the potential of phytochemical-rich foods to prevent age-related neurodegeneration and cognitive decline. Recent evidence has indicated that a group of plant-derived compounds known as flavonoids may exert particularly powerful actions on mammalian cognition and may reverse age-related declines in memory and learning. In particular, evidence suggests that foods rich in three specific flavonoid sub-groups, the flavanols, anthocyanins and/or flavanones, possess the greatest potential to act on the cognitive processes. This review will highlight the evidence for the actions of such flavonoids, found most commonly in fruits, such as apples, berries and citrus, on cognitive behaviour and the underlying cellular architecture. Although the precise mechanisms by which these flavonoids act within the brain remain unresolved, the present review focuses on their ability to protect vulnerable neurons and enhance the function of existing neuronal structures, two processes known to be influenced by flavonoids and also known to underpin neuro-cognitive function. Most notably, we discuss their selective interactions with protein kinase and lipid kinase signalling cascades (i.e. phosphoinositide-3 kinase/Akt and mitogen-activated protein kinase pathways), which regulate transcription factors and gene expression involved in both synaptic plasticity and cerebrovascular blood flow. Overall, the review attempts to provide an initial insight into the potential impact of regular flavonoid-rich fruit consumption on normal or abnormal deteriorations in cognitive performance.
Resumo:
The consumption of flavonoid-rich foods and beverages has been suggested to limit the neurodegeneration associated with a variety of neurological disorders and to prevent or reverse normal or abnormal deteriorations in cognitive performance. Flavonoids mediate these effects via a number of routes, including a potential to protect neurons against injury induced by neurotoxins, an ability to suppress neuroinflammation and a potential to promote memory, learning and cognitive function. Originally, it was thought that such actions were mediated by the antioxidant capacity of flavonoids. However, their limited absorption and their low bioavailability in the brain suggest that this explanation is unlikely. Instead, this multiplicity of effects appears to be underpinned by three separate processes: first, through their interactions with important neuronal and glial signalling cascades in the brain, most notably the phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways that regulate pro-survival transcription factors and gene expression; second, through an ability to improve peripheral and cerebral blood flow and to trigger angiogenesis and neurogenesis in the hippocampus; third, by their capacity to directly react with and scavenge neurotoxic species and pro-inflammatory agents produced in the brain as a result of both normal and abnormal brain ageing. The present review explores the potential inhibitory or stimulatory actions of flavonoids within these three systems and describes how such interactions are likely to underlie neurological effects.