858 resultados para Reconhecimento de Faces
Resumo:
To compare neural activity produced by visual events that escape or reach conscious awareness, we used event-related MRI and evoked potentials in a patient who had neglect and extinction after focal right parietal damage, but intact visual fields. This neurological disorder entails a loss of awareness for stimuli in the field contralateral to a brain lesion when stimuli are simultaneously presented on the ipsilateral side, even though early visual areas may be intact, and single contralateral stimuli may still be perceived. Functional MRI and event-related potential study were performed during a task where faces or shapes appeared in the right, left, or both fields. Unilateral stimuli produced normal responses in V1 and extrastriate areas. In bilateral events, left faces that were not perceived still activated right V1 and inferior temporal cortex and evoked nonsignificantly reduced N1 potentials, with preserved face-specific negative potentials at 170 ms. When left faces were perceived, the same stimuli produced greater activity in a distributed network of areas including right V1 and cuneus, bilateral fusiform gyri, and left parietal cortex. Also, effective connectivity between visual, parietal, and frontal areas increased during perception of faces. These results suggest that activity can occur in V1 and ventral temporal cortex without awareness, whereas coupling with dorsal parietal and frontal areas may be critical for such activity to afford conscious perception.
Resumo:
We applied mutational analysis to a protein domain that functions in neither catalysis nor binding but, rather, in transmembrane signaling. The domain is part of chemoreceptor Trg from Escherichia coli. It contains four transmembrane segments, two from each subunit of the homodimer. We used cysteine scanning to investigate the functional importance of each of 54 residues in the two transmembrane segments. Cysteines at some positions resulted in subtle but significant reductions in tactic response. Those positions defined a specific helical face on each segment, implying that the segments function as helices. The functionally important faces corresponded to structural, helical packing faces identified independently by biochemical studies. All functionally impaired receptors exhibited altered signaling properties, either reduced signaling upon stimulation or induced signaling in the absence of stimulation. The distribution of substitutions creating these two phenotypes implied that conformational signaling involves movement between the two transmembrane helices within a subunit and that signaling is optimal when stable interactions are maintained across the interface between subunits.