972 resultados para Recombinant human growth hormone (rhGH)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Perturbations in endocrine functions can impact normal growth. Endocrine traits were studied in three dwarf calves exhibiting retarded but proportionate growth and four phenotypically normal half-siblings, sired by the same bull, and four unrelated control calves. Plasma 3,5,3'-triiodothyronine and thyroxine concentrations in dwarfs and half-siblings were in the physiological range and responded normally to injected thyroid-releasing hormone. Plasma glucagon concentrations were different (dwarfs, controls>half-siblings; P<0.05). Plasma growth hormone (GH), insulin-like growth factor-1 (IGF-1) and insulin concentrations in the three groups during an 8-h period were similar, but integrated GH concentrations (areas under concentration curves) were different (dwarfs>controls, P<0.02; half-siblings>controls, P=0.08). Responses of GH to xylazine and to a GH-releasing-factor analogue were similar in dwarfs and half-siblings. Relative gene expression of IGF-1, IGF-2, GH receptor (GHR), insulin receptor, IGF-1 type-1 and -2 receptors (IGF-1R, IGF-2R), and IGF binding proteins were measured in liver and anconeus muscle. GHR mRNA levels were different in liver (dwarfs

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim of the study was to investigate the possible mechanisms leading to stunted growth and osteoporosis in experimental arthritis. Fourty-two female rats of 7-8 weeks of age were randomly assigned to three groups of 14 animals each: (a) controls; (b) adjuvant-inoculated (AA); and (c) adjuvant-inoculated rats receiving 10 mg cyclosporin A (CsA) orally for 30 days. Biological parameters studied were: hindpaw swelling; vertebral length progression expressed as Delta increments between days 1 and 30 as a parameter of skeletal growth, and estimation of total skeletal mineral content by dual energy X-ray absorptiometry (n=10 each group) on day 30. Endocrine parameters measured were pulsatile release of growth hormone (rGH) on day 30 following jugular cannulation and measurement of insulin-like growth factor (IGF-1) in pooled plasma from rGH profiles. Results can be summarized as follows: Untreated AA rats exhibited local signs of inflammation in comparison with controls (hindpaw diameter 8.1-8.9 mm vs. 5.3-5.6 mm in controls). Treatment with CsA normalized this parameter (4.9-5.6 mm). Vertebral growth was significantly retarded in AA rats in comparison with controls (214+/-32 vs. 473+/-33 microm; p<0.001). Administration of CsA normalized vertebral size increment with a clear tendency to overgrowth (523+/-43 microm, n.s.). There was also a marked reduction in total skeletal mineral content in diseased (AA) rats as compared to controls (5.8+/-0.1 vs. 7.5+/-0.1g [OH-apatite]; p<0.001), and a moderate but significant increment above controls in the group receiving CsA (8.0+/-0.1 vs. 7.5+/-0.1g [OH-appatite]; p<0.04). Integrated rGH profiles exhibited a significant fall in arthritic rats and were completely restored to normal under CsA treatment. A trend toward higher rGH values was observed in the latter group (2908+/-554 in AA vs. 8317+/-1492 ng/ml/240 min in controls; p<0.001, and 10940+/-222 ng/ml/240 min, n.s. in the CsA group). There was a good correlation between skeletal growth and rGH pulsatility (r=0.81; p<0.001). IGF-1 followed a similar pattern (630+/-44 in AA vs. 752+/-30 ng/ml in controls; p<0.04, and 769+/-59 ng/ml in the CsA group, n.s. vs. controls). Thus, a clear tendency to skeletal overgrowth following treatment was observed in agreement with the hormonal data. It can therefore be concluded that, in experimental arthritis, attenuated GH-spiking and reduced circulating IGF-1 appear to be causally related to growth retardation, probably mimicking signs and symptoms observed in juvenile arthritis. Therapy with CsA is followed by normalization of hormonal and biological parameters accompanied by a catch up phenomenon in skeletal growth which is also observed clinically in juvenile arthritis. Generalized osteopenia is a prominent feature seemingly connected with the growth abnormalities as they parallel each other during the evolution of the disease and respond equally to therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: The presence of an ectopic posterior pituitary gland (EPP) on magnetic resonance imaging (MRI) is associated with hypopituitarism with one or more hormone deficiencies. We aimed to identify risk factors for having multiple pituitary hormone deficiency (MPHD) compared to isolated growth hormone deficiency (IGHD) in patients with an EPP. METHODS: In 67 patients (45 male) with an EPP on MRI, the site (hypothalamic vs. stalk) and surface area (SA) [ x (maximum diameter/2) x (maximum height/2), mm(2)] of the EPP were recorded and compared in patients with IGHD and MPHD in relation to clinical characteristics. RESULTS: In MPHD (n = 32) compared to IGHD (n = 35) patients: age of presentation was younger (1.4 [0.1-10.7]vs. 4.0 [0.1-11.3] years, P = 0.005), major incidents during pregnancy were increased (47%vs. 20%, P = 0.02) as were admissions to a neonatal intensive care unit (NICU) (60%vs. 26%, P = 0.04), whilst EPP SA was lower (12.3 [2.4-34.6]vs. 25.7 [6.9-48.2] mm(2), P < 0.001). In patients with a hypothalamic (n = 56) compared to a stalk sited EPP (n = 11): prevalence of MPHD was greater (55%vs. 9%,P = 0.05) and EPP surface area was smaller (17.3 [2.4-48.2]vs. 25.3 [11.8-38.5] mm(2), P < 0.001). In regression analysis, after adjusting for age, presence of MPHD was associated with: major incidents during pregnancy (RR 6.8 [95%CI 1.2-37.7]), hypothalamic EPP site (RR 10.9 [1.0-123.9]) and small EPP SA (RR 2.5 [1.0-5.0] for tertiles of SA). CONCLUSION: In patients with an EPP, adverse antenatal events, size (small) and position (hypothalamic) of the posterior pituitary gland on MRI were associated with MPHD. These findings suggest that adverse factors during pregnancy may be important for the development of an EPP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Through alternative splicing, multiple different transcripts can be generated from a single gene. Alternative splicing represents an important molecular mechanism of gene regulation in physiological processes such as developmental programming as well as in disease. In cancer, splicing is significantly altered. Tumors express a different collection of alternative spliceoforms than normal tissues. Many tumor-associated splice variants arise from genes with an established role in carcinogenesis or tumor progression, and their functions can be oncogenic. This raises the possibility that products of alternative splicing play a pathogenic role in cancer. Moreover, cancer-associated spliceoforms represent potential diagnostic biomarkers and therapeutic targets. G protein-coupled peptide hormone receptors provide a good illustration of alternative splicing in cancer. The wild-type forms of these receptors have long been known to be expressed in cancer and to modulate tumor cell functions. They are also recognized as attractive clinical targets. Recently, splice variants of these receptors have been increasingly identified in various types of cancer. In particular, alternative cholecystokinin type 2, secretin, and growth hormone-releasing hormone receptor spliceoforms are expressed in tumors. Peptide hormone receptor splice variants can fundamentally differ from their wild-type receptor counterparts in pharmacological and functional characteristics, in their distribution in normal and malignant tissues, and in their potential use for clinical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe herein some immunological properties of human fetal bone cells recently tested for bone tissue-engineering applications. Adult mesenchymal stem cells (MSCs) and osteoblasts were included in the study for comparison. Surface markers involved in bone metabolism and immune recognition were analyzed using flow cytometry before and after differentiation or treatment with cytokines. Immunomodulatory properties were studied on activated peripheral blood mononuclear cells (PBMCs). The immuno-profile of fetal bone cells was further investigated at the gene expression level. Fetal bone cells and adult MSCs were positive for Stro-1, alkaline phosphatase, CD10, CD44, CD54, and beta2-microglobulin, but human leukocyte antigen (HLA)-I and CD80 were less present than on adult osteoblasts. All cells were negative for HLA-II. Treatment with recombinant human interferon gamma increased the presence of HLA-I in adult cells much more than in fetal cells. In the presence of activated PBMCs, fetal cells had antiproliferative effects, although with patterns not always comparable with those of adult MSCs and osteoblasts. Because of the immunological profile, and with their more-differentiated phenotype than of stem cells, fetal bone cells present an interesting potential for allogeneic cell source in tissue-engineering applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Growth hormone (GH) is a metabolic hormone that plays an important role in long-bone growth and muscle accretion in mammals. The anterior pituitary gland at the base of the brain is the primary site of GH production and release into the general circulation. Neurons in the arcuate nucleus of the hypothalamus in the lower part of the brain secrete GH-releasing hormone ([GHRH] or factor [GRF]) and GH-release-inhibiting hormone ([GHRIH] or somatostatin [SRIH]) that acutely modulate GH secretion by the pituitary gland. The pituitary gland is connected to the median eminence of the hypothalamus by a stalk (hypophyseal stalk). Complete surgical removal of the pituitary gland (hypophysectomy) arrests growth and greatly impairs metabolism in laboratory and farm animal species. Daily subcutaneous injection of bovine GH (bGH) in immature hypophysectomized rats significantly increased body growth and epiphyseal plate width of the long-bone (tibia) compared with diluent-treated hypophysectomized controls. Growth rate was less, however, in the bGH-treated animals compared with intact controls. In beef calves, hypophysectomy completely arrested body weight gain and long-bone growth. GH is secreted in an episodic pattern in young growing intact calves. Episodic GH secretion was abolished immediately following hypophyseal stalk transection, and basal GH blood concentration was less than in shamoperated controls. Regardless, growth continued in these stalk-transected calves during a 1,008-day period, but at a lower growth rate than seen in the sham-operated controls. At autopsy, pituitary gland weight was greatly decreased in hypophyseal stalktransected compared with sham-operated calves. Thus, in spite of obliterated episodic GH release and decreased basal secretion of GH, the isolated pituitary gland of hypophyseal stalk transected calves continues to secrete sufficient amounts of GH for significant growth and development throughout a long period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small peptide hormones produced in the lower part of the brain (hypothalamus) regulate episodic and basal secretion of hormones from the anterior pituitary gland that affect metabolism and growth in cattle. This study focused on long-term growth in young calves subjected to hypophysectomy (HYPOX), hypophyseal stalk transection (HST), and sham operation control (SOC). Crossbred (Hereford x Aberdeen Angus) and Hereford, and Aberdeen Angus calves were HYPOX (n = 5), HST (n = 5), or SOC (n = 8) at 146 days of age, whereas another group was HST (n = 5) or SOC (n = 7) at 273 days of age. Body weight was determined every 21 days from birth to 1008 days of age. From day 146-1008, growth was arrested (P < 0.001) in HYPOX (0.06 kg/day) compared with SOC (0.50 kg/day) calves. Growth continued but at a significantly lower rate (P < 0.05) in calves HST at 146 days (0.32 kg/day) and 273 days (0.32 kg/day) compared with SOC (0.50 kg/day). Although episodic growth hormone (GH) secretion was abolished and peripheral blood serum GH concentration remained consistently lower in HST calves (2.4 ng/ml) than in the SOC (5.5 ng/ml; P < 0.01), the calves continued to grow throughout 1008 days. Peripheral serum thyroid stimulating hormone (TSH) concentration was less (P < 0.05) in HST compared with SOC calves. There was an abrupt decrease (P < 0.001) in serum thyroxine (T4) (4-fold) and triiodothyronine (T3) (3-fold) concentration after surgery that remained to 360 days in HST compared with SOC calves. At sacrifice, pituitary gland weight was markedly reduced (P < 0.001) in HST (0.18 g/100 kg body weight) compared with SOC (0.55 g/100 kg body weight) calves. Histological examination of pituitary glands from HST calves indicated the persistence of secretory GH and TSH cells in the same areas of the anterior pituitary gland as SOC calves. Coronal sections of the gland revealed GH and TSH secreting cells in HST calves that were similar to the controls. These results indicate that long-term growth continues, but at a slower rate, after hypophyseal stalk transection of immature calves in spite of complete abolition of episodic GH secretion and consistently decreased basal secretion of GH, TSH, T4, and T3 compared with sham-operated animals. Growth was abolished after hypophysectomy of immature calves in which circulating GH and TSH was undetectable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The method of isolation of bone marrow (BM) mesenchymal stem/stromal cells (MSCs) is a limiting factor in their study and therapeutic use. MSCs are typically expanded from BM cells selected on the basis of their adherence to plastic, which results in a heterogeneous population of cells. Prospective identification of the antigenic profile of the MSC population(s) in BM that gives rise to cells with MSC activity in vitro would allow the preparation of very pure populations of MSCs for research or clinical use. To address this issue, we used polychromatic flow cytometry and counterflow centrifugal elutriation to identify a phenotypically distinct population of mesenchymal stem/progenitor cells (MSPCs) within human BM. The MSPC activity resided within a population of rare, small CD45⁻CD73⁺CD90⁺CD105⁺ cells that lack CD44, an antigen that is highly expressed on culture-expanded MSCs. In culture, these MSPCs adhere to plastic, rapidly proliferate, and acquire CD44 expression. They form colony forming units-fibroblast and are able to differentiate into osteoblasts, chondrocytes, and adipocytes under defined in vitro conditions. Their acquired expression of CD44 can be partially downregulated by treatment with recombinant human granulocyte-colony stimulating factor, a response not found in BM-MSCs derived from conventional plastic adherence methods. These observations indicate that MSPCs within human BM are rare, small CD45⁻CD73⁺CD90⁺CD105⁺ cells that lack expression of CD44. These MSPCs give rise to MSCs that have phenotypic and functional properties that are distinct from those of BM-MSCs purified by plastic adherence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Suboptimal dietary zinc (Zn(2+)) intake is increasingly appreciated as an important public health issue. Zn(2+) is an essential mineral, and infants are particularly vulnerable to Zn(2+) deficiency, as they require large amounts of Zn(2+) for their normal growth and development. Although term infants are born with an important hepatic Zn(2+) storage, adequate Zn(2+) nutrition of infants mostly depends on breast milk or formula feeding, which contains an adequate amount of Zn(2+) to meet the infants' requirements. An exclusively breast-fed 6 months old infant suffering from Zn(2+) deficiency caused by an autosomal dominant negative G87R mutation in the Slc30a2 gene (encoding for the zinc transporter 2 (ZnT-2)) in the mother is reported. More than 20 zinc transporters characterized up to date, classified into two families (Slc30a/ZnT and Slc39a/Zip), reflect the complexity and importance of maintaining cellular Zn(2+) homeostasis and dynamics. The role of ZnTs is to reduce intracellular Zn(2+) by transporting it from the cytoplasm into various intracellular organelles and by moving Zn(2+) into extracellular space. Zips increase intracellular Zn(2+) by transporting it in the opposite direction. Thus the coordinated action of both is essential for the maintenance of Zn(2+) homeostasis in the cytoplasm, and accumulating evidence suggests that this is also true for the secretory pathway of growth hormone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND & AIMS Proprotein convertase 1/3 (PC1/3) deficiency, an autosomal-recessive disorder caused by rare mutations in the proprotein convertase subtilisin/kexin type 1 (PCSK1) gene, has been associated with obesity, severe malabsorptive diarrhea, and certain endocrine abnormalities. Common variants in PCSK1 also have been associated with obesity in heterozygotes in several population-based studies. PC1/3 is an endoprotease that processes many prohormones expressed in endocrine and neuronal cells. We investigated clinical and molecular features of PC1/3 deficiency. METHODS We studied the clinical features of 13 children with PC1/3 deficiency and performed sequence analysis of PCSK1. We measured enzymatic activity of recombinant PC1/3 proteins. RESULTS We identified a pattern of endocrinopathies that develop in an age-dependent manner. Eight of the mutations had severe biochemical consequences in vitro. Neonates had severe malabsorptive diarrhea and failure to thrive, required prolonged parenteral nutrition support, and had high mortality. Additional endocrine abnormalities developed as the disease progressed, including diabetes insipidus, growth hormone deficiency, primary hypogonadism, adrenal insufficiency, and hypothyroidism. We identified growth hormone deficiency, central diabetes insipidus, and male hypogonadism as new features of PCSK1 insufficiency. Interestingly, despite early growth abnormalities, moderate obesity, associated with severe polyphagia, generally appears. CONCLUSIONS In a study of 13 children with PC1/3 deficiency caused by disruption of PCSK1, failure of enteroendocrine cells to produce functional hormones resulted in generalized malabsorption. These findings indicate that PC1/3 is involved in the processing of one or more enteric hormones that are required for nutrient absorption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytochrome P450c17 catalyzes both 17alpha-hydroxylation and 17,20-lyase conversion of 21-carbon steroids to 19-carbon precursors of sex steroids. P450c17 can mediate testosterone biosynthesis via the conversion of pregnenolone to dehydroepiandrosterone (the delta(5) pathway) or via conversion of progesterone to androstenedione (the delta(4) pathway). In many species, the 17, 20-lyase activity of P450c17 for one pathway dominates, reflecting the preferred steroidogenic pathway of that species. All studies of recombinant human P450c17 and of human adrenal microsomes have found high 17, 20-lyase activity only in the delta(5) pathway. Because the 17, 20-lyase activities in both the delta(4) and delta(5) pathways for testicular P450c17 have not been directly compared, however, it is not known if the delta(5) pathway dominates in the human testis. To resolve this issue, we assayed the conversion of 17alpha-hydroxypregnenolone to dehydroepiandrosterone (delta(5) 17, 20-lyase activity) and of 17alpha-hydroxyprogesterone to androstenedione (delta(4) 17, 20-lyase activity) by human fetal testicular microsomes. We obtained apparent Michaelis constant (K(m)) and maximum velocity (V(max)) values of 1.0 microM and 0.73 pmol.min(-1). microg(-1) for delta(5) 17, 20-lyase activity and of 3.5 microM and 0.23 pmol.min(-1). microg(-1) for delta(4) 17, 20-lyase activity. Catalytic efficiencies, expressed as the ratio V(max)/K(m), were 0.73 and 0.066 for the delta(5) and delta(4) reactions, respectively, indicating 11-fold higher preference for the delta(5) pathway. We conclude that the majority of testosterone biosynthesis in the human testis proceeds through the conversion of pregnenolone to dehydroepiandrosterone via the delta(5) pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exogenous recombinant human transforming growth factor beta-1 (TGF-beta1) induced long-term facilitation of Aplysia sensory-motor synapses. In addition, 5-HT-induced facilitation was blocked by application of a soluble fragment of the extracellular portion of the TGF-beta1 type II receptor (TbetaR-II), which presumably acted by scavenging an endogenous TGF-beta1-like molecule. Because TbetaR-II is essential for transmembrane signaling by TGF-beta, we sought to determine whether Aplysia tissues contained TbetaR-II and specifically, whether neurons expressed the receptor. Western blot analysis of Aplysia tissue extracts demonstrated the presence of a TbetaR-II-immunoreactive protein in several tissue types. The expression and distribution of TbetaR-II-immunoreactive proteins in the central nervous system was examined by immunohistochemistry to elucidate sites that may be responsive to TGF-beta1 and thus may play a role in synaptic plasticity. Sensory neurons in the ventral-caudal cluster of the pleural ganglion were immunoreactive for TbetaR-II, as well as many neurons in the pedal, abdominal, buccal, and cerebral ganglia. Sensory neurons cultured in isolation and cocultured sensory and motor neurons were also immunoreactive. TGF-beta1 affected the biophysical properties of cultured sensory neurons, inducing an increase of excitability that persisted for at least 48 hr. Furthermore, exposure to TGF-beta1 resulted in a reduction in the firing threshold of sensory neurons. These results provide further support for the hypothesis that TGF-beta1 plays a role in long-term synaptic plasticity in Aplysia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hunter syndrome (mucopolysaccharidosis type II) is a rare and life-limiting multisystemic disorder with an X-linked recessive pattern of inheritance. Short stature is a prominent feature of this condition. This analysis aimed to investigate the effects of enzyme replacement therapy with idursulfase on growth in patients enrolled in HOS - the Hunter Outcome Survey which is a multinational observational database. As of Jan 2012, height data before treatment were available for 567 of 740 males followed prospectively after HOS entry. Cross-sectional analysis showed that short stature became apparent after approximately 8 years of age; before this, height remained within the normal range. Age-corrected standardized height scores (z-scores) before and after treatment were assessed using piecewise regression model analysis in 133 patients (8-15 years of age at treatment start; data available on ≥ 1 occasion within +/-24 months of treatment start; growth hormone-treated patients excluded). Results showed that the slope after treatment (slope=-0.005) was significantly improved compared with before treatment (slope=-0.043) (difference=0.038, p=0.004). Analysis of covariates (age at treatment start, cognitive involvement, presence of puberty at the start of ERT, mutation type, functional classification), showed a significant influence on growth of mutation type (height deficit in terms of z-scores most pronounced in patients with deletions/large rearrangements/nonsense mutations, p<0.0001) and age (most pronounced in the 12-15-year group, p<0.0001). Cognitive involvement, pubertal status at the start of ERT and functional classification were not related to the growth deficit or response to treatment. In conclusion, the data showed an improvement in growth rate in patients with Hunter syndrome following idursulfase treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE We investigated the skeletal growth profile of female rats from birth to senescence (100weeks) on the basis of sequential radiometrical, hormonal and biochemical parameters. DESIGN Weaning rats entered the study which was divided into two sections: a) sequential measurements of vertebral and tibial growths and bone mineral density (BMD), estimation of mineral content of the entire skeleton (BMC) and chemical analysis of vertebral Ca; and b) determination of basal and pulsatile growth hormone (rGH), insulin-like growth hormone (IGF-I), estradiol (E2), parathyroid hormone (PTH), osteocalcin (OC) and urinary d-pyridinoline (dp) throughout the experimental period. RESULTS Vertebral and tibial growths ceased at week 25 whereas BMD and BMC as well as total vertebral Ca exhibited a peak bone mass at week 40. rGH pulsatile profiles were significantly higher in younger animals coinciding with the period of active growth and IGF-I peaked at 7weeks, slowly declining thereafter and stabilizing after week 60. OC and dp closely paralleled IGF-I coinciding with the period of enhanced skeletal growth, remaining thereafter in the low range indicative of reduced bone turnover. E2 increased during reproductive life but the lower values subsequently recorded were still in the physiological range, strongly suggesting a protective role of this steroid on bone remodeling. PTH followed a similar profile to E2, but the significance of this after completion of growth remains unclear. CONCLUSIONS Mechanisms governing skeletal growth in the female rat appear similar to those in humans. Bone progression and attainment of peak bone mass are under simultaneous control of rGH, IGF-I and calciotropic hormones and are modulated by E2. This steroid seems to protect the skeleton from resorption before senescence whereas the role of PTH in this context remains uncertain.