825 resultados para Range-finding
Resumo:
Defining the degree of host specificity in host-parasite studies can greatly inform cophylogenetic history. In a recent paper, Guiller and Deunff (2010) cast doubt on some points and conclusions drawn from a cophylogenetic study between European bats and Spinturnicid mites (Bruyndonckx et al., 2009a). Here we answer their criticisms and discuss the notion of specificity in Spinturnicid mites.
Resumo:
Marjolin's ulcer describes any malignant transformation of a chronic inflammatory lesion. In the majority of cases, a squamous cell carcinoma is diagnosed. Malignant transformation occurs usually after a long period of latency of chronic infection; it takes approximately 35 years on average. There are no typical clinical presentations, but several indirect signs may suggest the malignant transformation, such as increased or changed discharge, pathologic fracture, a slow-growing exophytic mass, or other suggestive signs of malignant transformation, which should prompt to biopsy for histological exam. The diagnosis of chronic osteomyelitis should not prevent to search for carcinoma. We present six patients with chronic osteomyelitis that developed well-differentiated squamous cell carcinoma. All patients were older than 50 years (mean 60 years, range 52-77 years). Five Marjolin's ulcers were located on the lower limb and one on the arm. The average time of the chronic discharging osteomyelitis before diagnosis of carcinoma ranged between 12 and 40 years. All patients were treated by amputation of the affected limb. None had metastasis, and one patient developed local recurrence and received palliative treatment. Our study emphasizes that Marjolin's ulcer should be considered as a rare but significant long-term complication of chronic osteomyelitis. The finding of microorganisms should not prevent from further diagnostic procedures by histopathological examination so that the correct surgical treatment can be performed.
Resumo:
This paper analyzes the possibilities of integrating cost information and engineering design. Special emphasis is put on finding the potential of using the activity-based costing (ABC) method. Today, the problem of cost estimation in engineering design is that there are two separate extremes of knowledge. On the one extreme, the engineers model the technical parametres behindcosts in great detail but do not get appropriate cost information to their elegant models. On the other extreme, the accounting professionals are stuck with traditional cost accounting methods driven by the procedures and cycles of financial accounting. Therefore, in many cases, the cost information needs of various decision making groups, for example design engineers, are not served satisfactorily. This paper studies if the activity-based costing (ABC) method could offer a compromise between the two extremes. Recognizing activities and activity chains as well as activity and cost drivers could be specially beneficial for design engineers. Also, recognizing the accurate and reliable product costs of existing products helps when doing variant design. However, ABC is not at its best if the cost system becomes too complicated. This is why a comprehensive ABC-cost information system with detailed cost information for the use of design engineers should be examined critically. ABC is at its best when considering such issues as which activities drive costs, the cost of product complexity, allocating indirect costs on the products, the relationships between processes and costs, and the cost of excess capacity.
Resumo:
This work deals with the cooling of high-speed electric machines, such as motors and generators, through an air gap. It consists of numerical and experimental modelling of gas flow and heat transfer in an annular channel. Velocity and temperature profiles are modelled in the air gap of a high-speed testmachine. Local and mean heat transfer coefficients and total friction coefficients are attained for a smooth rotor-stator combination at a large velocity range. The aim is to solve the heat transfer numerically and experimentally. The FINFLO software, developed at Helsinki University of Technology, has been used in the flow solution, and the commercial IGG and Field view programs for the grid generation and post processing. The annular channel is discretized as a sector mesh. Calculation is performed with constant mass flow rate on six rotational speeds. The effect of turbulence is calculated using three turbulence models. The friction coefficient and velocity factor are attained via total friction power. The first part of experimental section consists of finding the proper sensors and calibrating them in a straight pipe. After preliminary tests, a RdF-sensor is glued on the walls of stator and rotor surfaces. Telemetry is needed to be able to measure the heat transfer coefficients at the rotor. The mean heat transfer coefficients are measured in a test machine on four cooling air mass flow rates at a wide Couette Reynolds number range. The calculated values concerning the friction and heat transfer coefficients are compared with measured and semi-empirical data. Heat is transferred from the hotter stator and rotor surfaces to the coolerair flow in the air gap, not from the rotor to the stator via the air gap, althought the stator temperature is lower than the rotor temperature. The calculatedfriction coefficients fits well with the semi-empirical equations and precedingmeasurements. On constant mass flow rate the rotor heat transfer coefficient attains a saturation point at a higher rotational speed, while the heat transfer coefficient of the stator grows uniformly. The magnitudes of the heat transfer coefficients are almost constant with different turbulence models. The calibrationof sensors in a straight pipe is only an advisory step in the selection process. Telemetry is tested in the pipe conditions and compared to the same measurements with a plain sensor. The magnitudes of the measured data and the data from the semi-empirical equation are higher for the heat transfer coefficients than thenumerical data considered on the velocity range. Friction and heat transfer coefficients are presented in a large velocity range in the report. The goals are reached acceptably using numerical and experimental research. The next challenge is to achieve results for grooved stator-rotor combinations. The work contains also results for an air gap with a grooved stator with 36 slots. The velocity field by the numerical method does not match in every respect the estimated flow mode. The absence of secondary Taylor vortices is evident when using time averagednumerical simulation.
Resumo:
The application of forced unsteady-state reactors in case of selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3) is sustained by the fact that favorable temperature and composition distributions which cannot be achieved in any steady-state regime can be obtained by means of unsteady-state operations. In a normal way of operation the low exothermicity of the selective catalytic reduction (SCR) reaction (usually carried out in the range of 280-350°C) is not enough to maintain by itself the chemical reaction. A normal mode of operation usually requires supply of supplementary heat increasing in this way the overall process operation cost. Through forced unsteady-state operation, the main advantage that can be obtained when exothermic reactions take place is the possibility of trapping, beside the ammonia, the moving heat wave inside the catalytic bed. The unsteady state-operation enables the exploitation of the thermal storage capacity of the catalyticbed. The catalytic bed acts as a regenerative heat exchanger allowing auto-thermal behaviour when the adiabatic temperature rise is low. Finding the optimum reactor configuration, employing the most suitable operation model and identifying the reactor behavior are highly important steps in order to configure a proper device for industrial applications. The Reverse Flow Reactor (RFR) - a forced unsteady state reactor - corresponds to the above mentioned characteristics and may be employed as an efficient device for the treatment of dilute pollutant mixtures. As a main disadvantage, beside its advantages, the RFR presents the 'wash out' phenomena. This phenomenon represents emissions of unconverted reactants at every switch of the flow direction. As a consequence our attention was focused on finding an alternative reactor configuration for RFR which is not affected by the incontrollable emissions of unconverted reactants. In this respect the Reactor Network (RN) was investigated. Its configuration consists of several reactors connected in a closed sequence, simulating a moving bed by changing the reactants feeding position. In the RN the flow direction is maintained in the same way ensuring uniformcatalyst exploitation and in the same time the 'wash out' phenomena is annulated. The simulated moving bed (SMB) can operate in transient mode giving practically constant exit concentration and high conversion levels. The main advantage of the reactor network operation is emphasizedby the possibility to obtain auto-thermal behavior with nearly uniformcatalyst utilization. However, the reactor network presents only a small range of switching times which allow to reach and to maintain an ignited state. Even so a proper study of the complex behavior of the RN may give the necessary information to overcome all the difficulties that can appear in the RN operation. The unsteady-state reactors complexity arises from the fact that these reactor types are characterized by short contact times and complex interaction between heat and mass transportphenomena. Such complex interactions can give rise to a remarkable complex dynamic behavior characterized by a set of spatial-temporal patterns, chaotic changes in concentration and traveling waves of heat or chemical reactivity. The main efforts of the current research studies concern the improvement of contact modalities between reactants, the possibility of thermal wave storage inside the reactor and the improvement of the kinetic activity of the catalyst used. Paying attention to the above mentioned aspects is important when higher activity even at low feeding temperatures and low emissions of unconverted reactants are the main operation concerns. Also, the prediction of the reactor pseudo or steady-state performance (regarding the conversion, selectivity and thermal behavior) and the dynamicreactor response during exploitation are important aspects in finding the optimal control strategy for the forced unsteady state catalytic tubular reactors. The design of an adapted reactor requires knowledge about the influence of its operating conditions on the overall process performance and a precise evaluation of the operating parameters rage for which a sustained dynamic behavior is obtained. An apriori estimation of the system parameters result in diminution of the computational efforts. Usually the convergence of unsteady state reactor systems requires integration over hundreds of cycles depending on the initial guess of the parameter values. The investigation of various operation models and thermal transfer strategies give reliable means to obtain recuperative and regenerative devices which are capable to maintain an auto-thermal behavior in case of low exothermic reactions. In the present research work a gradual analysis of the SCR of NOx with ammonia process in forced unsteady-state reactors was realized. The investigation covers the presentationof the general problematic related to the effect of noxious emissions in the environment, the analysis of the suitable catalysts types for the process, the mathematical analysis approach for modeling and finding the system solutions and the experimental investigation of the device found to be more suitable for the present process. In order to gain information about the forced unsteady state reactor design, operation, important system parameters and their values, mathematical description, mathematicalmethod for solving systems of partial differential equations and other specific aspects, in a fast and easy way, and a case based reasoning (CBR) approach has been used. This approach, using the experience of past similarproblems and their adapted solutions, may provide a method for gaining informations and solutions for new problems related to the forced unsteady state reactors technology. As a consequence a CBR system was implemented and a corresponding tool was developed. Further on, grooving up the hypothesis of isothermal operation, the investigation by means of numerical simulation of the feasibility of the SCR of NOx with ammonia in the RFRand in the RN with variable feeding position was realized. The hypothesis of non-isothermal operation was taken into account because in our opinion ifa commercial catalyst is considered, is not possible to modify the chemical activity and its adsorptive capacity to improve the operation butis possible to change the operation regime. In order to identify the most suitable device for the unsteady state reduction of NOx with ammonia, considering the perspective of recuperative and regenerative devices, a comparative analysis of the above mentioned two devices performance was realized. The assumption of isothermal conditions in the beginningof the forced unsteadystate investigation allowed the simplification of the analysis enabling to focus on the impact of the conditions and mode of operation on the dynamic features caused by the trapping of one reactant in the reactor, without considering the impact of thermal effect on overall reactor performance. The non-isothermal system approach has been investigated in order to point out the important influence of the thermal effect on overall reactor performance, studying the possibility of RFR and RN utilization as recuperative and regenerative devices and the possibility of achieving a sustained auto-thermal behavior in case of lowexothermic reaction of SCR of NOx with ammonia and low temperature gasfeeding. Beside the influence of the thermal effect, the influence of the principal operating parameters, as switching time, inlet flow rate and initial catalyst temperature have been stressed. This analysis is important not only because it allows a comparison between the two devices and optimisation of the operation, but also the switching time is the main operating parameter. An appropriate choice of this parameter enables the fulfilment of the process constraints. The level of the conversions achieved, the more uniform temperature profiles, the uniformity ofcatalyst exploitation and the much simpler mode of operation imposed the RN as a much more suitable device for SCR of NOx with ammonia, in usual operation and also in the perspective of control strategy implementation. Theoretical simplified models have also been proposed in order to describe the forced unsteady state reactors performance and to estimate their internal temperature and concentration profiles. The general idea was to extend the study of catalytic reactor dynamics taking into account the perspectives that haven't been analyzed yet. The experimental investigation ofRN revealed a good agreement between the data obtained by model simulation and the ones obtained experimentally.
Resumo:
This paper describes a mesurement system designed to register the displacement of the legs using a two-dimensional laser range sensor with a scanning plane parallel to the ground and extract gait parameters. In the proposed methodology, the position of the legs is estimated by fitting two circles with the laser points that define their contour and the gait parameters are extracted applying a step-line model to the estimated displacement of the legs to reduce uncertainty in the determination of the stand and swing phase of the gait. Results obtained in a range up to 8 m shows that the systematic error in the location of one static leg is lower than 10 mm with and standard deviation lower than 8 mm; this deviation increases to 11 mm in the case of a moving leg. The proposed measurement system has been applied to estimate the gait parameters of six volunteers in a preliminary walking experiment.
Resumo:
Las tendencias de emparejamiento selectivo suponen la unión de pares de individuos en algún rasgo humano (físico o psicológico) más semejantes de lo que cabría esperar por azar. La inteligencia y la personalidad constituyen dos de los rasgos más estudiados. Las tendencias de emparejamiento selectivo en una población poseen implicaciones sociológicas y genéticas. En España no existen evidencias empíricas sobre la presencia o ausencia de estas tendencias. En el presente estudio se evalúa la inteligencia, la dureza de carácter, la extraversión y la inestabilidad emocional de 342 parejas adultas de las Comunidades de Cataluña y de Madrid. El rango de edad de los miembros de las parejas oscila entre 34 y 77 años. También está representado un amplio rango de nivel educativo, desde estudios primarios a universitarios. Los resultados indican la presencia de un fuerte emparejamiento selectivo en inteligencia, pero no en los rasgos de personalidad evaluados. La semejanza en inteligencia no está influida por la semejanza en nivel de estudios. Además, los datos revelan una ligera reducción de la tendencia a emparejarse según la variable inteligencia en las parejas más jóvenes. El artículo discute las posibles implicaciones sociológicas y genéticas de esta reducción.
Resumo:
Wheat yield and grain nitrogen concentration (GNC; mg N/g grain) are frequently negatively correlated. In most growing conditions, this is mainly due to a feedback process between GNC and the number of grains/m2. In Mediterranean conditions, breeders may have produced cultivars with conservative grain set. The present study aimed at clarifying the main physiological determinants of grain nitrogen accumulation (GNA) in Mediterranean wheat and to analyse how breeding has affected them. Five field experiments were carried out in north-eastern Spain in the 2005/06 and 2006/ 07 growing seasons with three cultivars released at different times and an advanced line. Depending on the experiment, source-sink ratios during grain filling were altered by reducing grain number/m2 either through pre-anthesis shading (unshaded control or 0.75 shading only between jointing and anthesis) or by directly trimming the spikes after anthesis and before the onset of the effective grain filling period (un-trimmed control or spikes halved 7–10 days after anthesis). Grain nitrogen content (GN content ; mg N/grain) decreased with the year of release of the genotypes. As the number of grains/m2 was also increased by breeding there was a clear dilution effect on the amount of nitrogen allocated to each grain. However, the increase in GN content in old genotypes did not compensate for the loss in grain nitrogen yield (GNY) due to the lower number of grains/m2. GN content of all genotypes increased (increases ranged from 0.13 to 0.40 mg N/grain, depending on experiment and genotype) in response to the post-anthesis spike trimming or pre-anthesis shading. The degree of source-limitation for GNA increased with the year of release of the genotypes (and thus with increases in grain number/m2) from 0.22 (mean of the four manipulative experiments) in the oldest cultivar to 0.51 (mean of the four manipulative experiments) in the most modern line. It was found that final GN content depended strongly on the source-sink ratio established at anthesis between the number of grains set and the amount of nitrogen absorbed at this stage. Thus, Mediterranean wheat breeding that improved yield through increases in grain number/m2 reduced the GN content by diluting a rather limited source of nitrogen into more grains. This dilution effect produced by breeding was further confirmed by the reversal effect produced by grain number/m2 reductions due to either pre-anthesis shading or post-anthesis spike trimming.
Resumo:
Current diagnostic methods in differentiating septic from non-septic arthritis are time-consuming (culture) or have limited sensitivity (Gram stain). Microcalorimetry is a novel method that can rapidly detect microorganisms by their heat production. We investigated the accuracy and time to detection of septic arthritis by using microcalorimetry. Patients older than 18 years of age with acute arthritis of native joints were prospectively included. Synovial fluid was aspirated and investigated by Gram stain, culture and microcalorimetry. The diagnosis of septic arthritis and non-septic arthritis were made by experienced rheumatologists or orthopaedic surgeons. Septic arthritis was diagnosed by considering the finding of acute arthritis together with findings such as positive Gram stain or positive culture of synovial fluid or positive blood culture. The sensitivity and specificity for diagnosing septic arthritis and the time to positivity of microcalorimetry were determined. Of 90 patients (mean age 64 years), nine had septic arthritis, of whom four (44 %) had positive Gram stain, six (67 %) positive synovial fluid culture and four (44 %) had positive blood culture. The sensitivity of microcalorimetry was 89 %, the specificity was 99 % and the mean detection time was 5.0 h (range, 2.2-8.0 h). Microcalorimetry is an accurate and rapid method for the diagnosis of septic arthritis. It has potential to be used in clinical practice in diagnosing septic arthritis.
Resumo:
BACKGROUND: In this study, we aimed at assessing Inflammatory Bowel Disease patients' needs and current nursing practice to investigate to what extent consensus statements (European Crohn's and Colitis Organization) on the nursing roles in caring for patients with IBD concur with local practice. METHODS: We used a mixed-method convergent design to combine quantitative data prospectively collected in the Swiss IBD cohort study and qualitative data from structured interviews with IBD healthcare experts. Symptoms, quality of life, and anxiety and depression scores were retrieved from physician charts and patient self-reported questionnaires. Descriptive analyses were performed based on quantitative and qualitative data. RESULTS: 230 patients of a single center were included, 60% of patients were males, and median age was 40 (range 18-85). The prevalence of abdominal pain was 42%. Self-reported data were obtained from 75 out of 230 patients. General health was perceived significantly lower compared with the general population (p < 0.001). Prevalence of tiredness was 73%; sleep problems, 78%; issues related to work, 20%; sexual constraints, 35%; diarrhea, 67%; being afraid of not finding a bathroom, 42%; depression, 11%; and anxiety symptoms, 23%. According to experts' interviews, the consensus statements are found mostly relevant with many recommendations that are not yet realized in clinical practice. CONCLUSION: Identified prevalence may help clinicians in detecting patients at risk and improve patient management. © 2015 S. Karger AG, Basel.
Resumo:
Työn tavoitteena on analysoida KONEen hissien ovituoteperheitä ja harmonisoida modulaarista ovituotevalikoimaa niin, että tulos olisi mahdollisimman suotuisa KONEelle sekä sen sidosryhmille. Harmonisointi toteutetaan, koska KONEen tuotevalikoima on erittäin laaja ja monimutkainen ja siitä syystä erittäin kallis ja vaikea hallita ja ylläpitää. Tavoitteena on selvittää myös termejä modulaarisuus ja tuotealusta olennaisen kirjallisuuden pohjalta. Nykyään yritysten täytyy kehittää tuotevalikoimaa jatkuvasti. Yrityksen koko tuotevalikoiman varioituvuus tulisi kuitenkin pitää järkevissä rajoissa. Moduuleita ja tuotealustoja pitäisi käyttää jakamaan tuotteiden avainelementtejä ja lisäämään varioituvuutta helposti hallittavalla tavalla. Kannattamattomat ja matalavolyymiset tuotteet kuluttavat yrityksen niukkoja resursseja. Tällaiset tuotteet tulisi poistaa tuotevalikoimasta, mutta ei ilman harkintaa. Kannattama-tonkin tuote voi olla erittäin arvokas asiakkaalle ja tällaisen tuotteen hylkääminen voi olla yritykselle pitkällä tähtäimellä erittäin kohtalokasta. Työn tuloksena oli harmonisointiehdotus KONEen AMD-oville ja selvitys harmonisoinnin vaikutuksista. Harmonisointi KONEella päätettiin toteuttaa siten, että matalavolyymiset tuotteet siirrettiin erikoistuotteiden valikoimaan. Myös kustannusanalyysi tukee harmonisointipäätöstä laskentajärjestelmän puutteista huolimatta.
Resumo:
BACKGROUND: Diagnosis of pheochromocytoma (PC) is based on a combination of clinical suspicion, finding an adrenal mass, increased plasma, and urine concentrations of catecholamine metabolites and is finally confirmed with histopathology. In human medicine, it is controversial whether biochemically testing plasma is superior to testing urine. OBJECTIVES: To measure urinary and plasma catecholamines and metanephrines in healthy dogs, dogs with PC, hypercortisolism (HC), and nonadrenal diseases (NAD) and to determine the test with the best diagnostic performance for dogs with PC. ANIMALS: Seven PC dogs, 10 dogs with HC, 14 dogs with NAD, 10 healthy dogs. METHODS: Prospective diagnostic clinical study. Urine and heparin plasma samples were collected and stored at -80°C before analysis using high-pressure liquid chromatography (HPLC) coupled to electrochemical detection or tandem mass spectrometry were performed. Urinary variables were expressed as ratios to urinary creatinine concentration. RESULTS: Dogs with PC had significantly higher urinary normetanephrine and metanephrine : creatinine ratios and significantly higher plasma-total and free normetanephrine and plasma-free metanephrine concentrations compared to the 3 other groups. There were no overlapping results of urinary normetanephrine concentrations between PC and all other groups, and only one PC dog with a plasma normetanephrine concentration in the range of the dogs with HC and NAD disease. Performances of total and free plasma variables were similar. Overlap of epinephrine and norepinephrine results between the groups was large with both urine and plasma. CONCLUSION AND CLINICAL IMPORTANCE: Measurement of normetanephrine is the preferred biochemical test for PC and urine was superior to plasma.
Resumo:
PURPOSE: Small cell carcinomas of the bladder (SCCB) account for fewer than 1% of all urinary bladder tumors. There is no consensus regarding the optimal treatment for SCCB. METHODS AND MATERIALS: Fifteen academic Rare Cancer Network medical centers contributed SCCB cases. The eligibility criteria were as follows: pure or mixed SCC; local, locoregional, and metastatic stages; and age ≥18 years. The overall survival (OS) and disease-free survival (DFS) were calculated from the date of diagnosis according to the Kaplan-Meier method. The log-rank and Wilcoxon tests were used to analyze survival as functions of clinical and therapeutic factors. RESULTS: The study included 107 patients (mean [±standard deviation, SD] age, 69.6 [±10.6] years; mean follow-up time, 4.4 years) with primary bladder SCC, with 66% of these patients having pure SCC. Seventy-two percent and 12% of the patients presented with T2-4N0M0 and T2-4N1-3M0 stages, respectively, and 16% presented with synchronous metastases. The most frequent curative treatments were radical surgery and chemotherapy, sequential chemotherapy and radiation therapy, and radical surgery alone. The median (interquartile range, IQR) OS and DFS times were 12.9 months (IQR, 7-32 months) and 9 months (IQR, 5-23 months), respectively. The metastatic, T2-4N0M0, and T2-4N1-3M0 groups differed significantly (P=.001) in terms of median OS and DFS. In a multivariate analysis, impaired creatinine clearance (OS and DFS), clinical stage (OS and DFS), a Karnofsky performance status <80 (OS), and pure SCC histology (OS) were independent and significant adverse prognostic factors. In the patients with nonmetastatic disease, the type of treatment (ie radical surgery with or without adjuvant chemotherapy vs conservative treatment) did not significantly influence OS or DFS (P=.7). CONCLUSIONS: The prognosis for SCCB remains poor. The finding that radical cystectomy did not influence DFS or OS in the patients with nonmetastatic disease suggests that conservative treatment is appropriate in this situation.
Resumo:
The local thermodynamics of a system with long-range interactions in d dimensions is studied using the mean-field approximation. Long-range interactions are introduced through pair interaction potentials that decay as a power law in the interparticle distance. We compute the local entropy, Helmholtz free energy, and grand potential per particle in the microcanonical, canonical, and grand canonical ensembles, respectively. From the local entropy per particle we obtain the local equation of state of the system by using the condition of local thermodynamic equilibrium. This local equation of state has the form of the ideal gas equation of state, but with the density depending on the potential characterizing long-range interactions. By volume integration of the relation between the different thermodynamic potentials at the local level, we find the corresponding equation satisfied by the potentials at the global level. It is shown that the potential energy enters as a thermodynamic variable that modifies the global thermodynamic potentials. As a result, we find a generalized Gibbs-Duhem equation that relates the potential energy to the temperature, pressure, and chemical potential. For the marginal case where the power of the decaying interaction potential is equal to the dimension of the space, the usual Gibbs-Duhem equation is recovered. As examples of the application of this equation, we consider spatially uniform interaction potentials and the self-gravitating gas. We also point out a close relationship with the thermodynamics of small systems.
Resumo:
Purpose: The objective of the study is to quantify the wage gap between native and immigrant women in Spain, taking into account differences in their characteristics and the need to control for common support. If immigrant women are segregated in occupations with few native women, it is important to take this into account to analyse wage differentials between both collectives. Methodology: We use microdata from the Continuous Sample of Working Histories (Muestra Continua de Vidas Laborales) on wages and other personal characteristics such as gender, country of origin, and age to apply the matching procedure and the decomposition of the wage gap along the lines of Ñopo (2008) for the analysis of wage differentials between native and immigrant women. The advantage of this procedure is that we can simultaneously estimate the common support and the mean counterfactual wage for the women on the common support (i.e., comparing native and immigrant women with similar observable characteristics). In addition, we can describe differences not only at the mean but also along the entire wage distribution. Findings: The results obtained indicate that, on average, immigrant women earn less than native women in the Spanish labour market. This wage gap is bigger when we consider immigrant women from developing countries, but our main finding is that an important part of this wage gap is related to differences in common support (i.e., immigrant women are segregated in certain jobs with low wages different from those occupied by native women). If the need to control for common support is neglected, estimates of the wage gap will be biased. Originality: Studying the case of Spain is particularly interesting because it is a country with abundant and recent immigration. Immigrant women account for more than half of the total immigrants in Spain, and unlike other host countries, they come from a highly varied range of countries, with origins as diverse as Latin America, the Maghreb and Eastern Europe. To our knowledge, no other study has explicitly focused on the analysis of the wage differential of immigrant women in the Spanish labour market by taking into account the need to control for common support. Moreover, published papers illustrating the potentiality of Ñopo"s (2008) methodology are also very scarce.