940 resultados para Radar in navigation
Resumo:
This study analyzed the spatial memory capacities of rats in darkness with visual and/or olfactory cues through ontogeny. Tests were conducted with the homing board, where rats had to find the correct escape hole. Four age groups (24 days, 48 days, 3-6 months, and 12 months) were trained in 3 conditions: (a) 3 identical light cues; (b) 5 different olfactory cues; and (c) both types of cues, followed by removal of the olfactory cues. Results indicate that immature rats first take into account olfactory information but are unable to orient with only the help of discrete visual cues. Olfaction enables the use of visual information by 48-day-old rats. Visual information predominantly supports spatial cognition in adult and 12-month-old rats. Results point out cooperation between vision and olfaction for place navigation during ontogeny in rats.
Resumo:
There is a need to measure energy expenditure in man for a period of 24 h or even several days. The respiration chamber offers a unique opportunity to reach this goal. It allows the study of energy and nutrient balance; from the latter, acute changes in body composition can be obtained. The respiration chamber built in Lausanne is an air-tight room (5 m long, 2.5 m wide, and 2.5 m high) which forms an open circuit ventilated indirect calorimeter. The physical activity of the subject inside the chamber is continuously measured using a radar system based on the Doppler effect. Energy expenditure of obese and lean women was continuously measured over 24 h and diet-induced thermogenesis was assessed by using an approach which allows one to subtract the energy expended for physical activity from the total energy expenditure. Expressed in absolute terms, total energy expenditure was more elevated in the obese than in the lean controls. Basal metabolic rate was also higher in the obese than in the controls, but diet-induced thermogenesis was found to be blunted in the obese. In a second study, the effect of changing the carbohydrate/lipid content of the diet on fuel utilization was assessed in young healthy subjects with the respiration chamber. After a 7-day adaptation to a high-carbohydrate low-fat diet, the fuel mixture oxidized matched the change in nutrient intake. A last example of the use of the respiration chamber is the thermogenic response and changes in body composition due to a 7-day overfeeding of carbohydrate. Diet-induced thermogenesis was found to be 27%; on the last day of overfeeding, carbohydrate balance was reached by oxidation of 50% of the carbohydrate intake, the remaining 50% being converted into lipid.
Resumo:
Navigation by means of cognitive maps appears to require the hippocampus; hippocampal place cells (PCs) appear to store spatial memories because their discharge is confined to cell-specific places called firing fields (FFs). Experiments with rats manipulated idiothetic and landmark-related information to understand the relationship between PC activity and spatial rotation. Rotating a circular arena in the caused a discrepancy between these cuse. This discrepancy caused most FFs to disappear in both the arena and room reference frames. However, FFs persisted in the rotating arena frame when the discrepancy was reduced by darkness or by a card in the arena. The discrepancy was increased by "field clamping" the rat in a room-defined FF location by rotations that countered its locomotion. Most FFs disspared and reappeared an hour or more after the clamp. Place-avoidance experiments showed that navigation uses independent idiothetic and exteroceptive memories. Rats learned to avoid the unmarked footshock region within a circular arena. When acquired on the stable arena in the light, the location of the punishment was learned by using both room and idiothetic cues; extinction in the dark transferred to the following session in the light. If, however, extinction occured during rotation, only the arena-frame avoidance was extinguished in darkness; the room-defined location was avoided when the light were turned back on. Idiothetic memory of room-defined avoidance was not formed during rotation in light; regardless of rotation with a randomly dispersed pellet. The resulting behaviour alternated between random pellet searching and target-directed navigation, making it possible to examine PC correlates of these two classes of spatial behaviour. The independence of idiothetic and exteroceptive spatial memories and the disruption of PC firing during rotation suggest that PCs may not be necessary for spatial cognition; this idea can be tested by recording during place-avoidance and preference tasks.
Resumo:
OBJECTIVES: To test whether the Global Positioning System (GPS) could be potentially useful to assess the velocity of walking and running in humans. SUBJECT: A young man was equipped with a GPS receptor while walking running and cycling at various velocity on an athletic track. The speed of displacement assessed by GPS, was compared to that directly measured by chronometry (76 tests). RESULTS: In walking and running conditions (from 2-20 km/h) as well as cycling conditions (from 20-40 km/h), there was a significant relationship between the speed assessed by GPS and that actually measured (r = 0.99, P < 0.0001) with little bias in the prediction of velocity. The overall error of prediction (s.d. of difference) averaged +/-0.8 km/h. CONCLUSION: The GPS technique appears very promising for speed assessment although the relative accuracy at walking speed is still insufficient for research purposes. It may be improved by using differential GPS measurement.
Resumo:
Seafloor imagery is a rich source of data for the study of biological and geological processes. Among several applications, still images of the ocean floor can be used to build image composites referred to as photo-mosaics. Photo-mosaics provide a wide-area visual representation of the benthos, and enable applications as diverse as geological surveys, mapping and detection of temporal changes in the morphology of biodiversity. We present an approach for creating globally aligned photo-mosaics using 3D position estimates provided by navigation sensors available in deep water surveys. Without image registration, such navigation data does not provide enough accuracy to produce useful composite images. Results from a challenging data set of the Lucky Strike vent field at the Mid Atlantic Ridge are reported
Resumo:
This paper describes the improvements achieved in our mosaicking system to assist unmanned underwater vehicle navigation. A major advance has been attained in the processing of images of the ocean floor when light absorption effects are evident. Due to the absorption of natural light, underwater vehicles often require artificial light sources attached to them to provide the adequate illumination for processing underwater images. Unfortunately, these flashlights tend to illuminate the scene in a nonuniform fashion. In this paper a technique to correct non-uniform lighting is proposed. The acquired frames are compensated through a point-by-point division of the image by an estimation of the illumination field. Then, the gray-levels of the obtained image remapped to enhance image contrast. Experiments with real images are presented
Resumo:
This paper deals with the problem of navigation for an unmanned underwater vehicle (UUV) through image mosaicking. It represents a first step towards a real-time vision-based navigation system for a small-class low-cost UUV. We propose a navigation system composed by: (i) an image mosaicking module which provides velocity estimates; and (ii) an extended Kalman filter based on the hydrodynamic equation of motion, previously identified for this particular UUV. The obtained system is able to estimate the position and velocity of the robot. Moreover, it is able to deal with visual occlusions that usually appear when the sea bottom does not have enough visual features to solve the correspondence problem in a certain area of the trajectory
Resumo:
PURPOSE: To assess the diagnostic performance of respiratory self-navigation for whole-heart coronary magnetic resonance (MR) angiography in a patient cohort referred for diagnostic cardiac MR imaging. MATERIALS AND METHODS: Written informed consent was obtained from all participants for this institutional review board-approved study. Self-navigated coronary MR angiography was performed after administration of a contrast agent in 78 patients (mean age, 48.5 years ± 20.7 [standard deviation]; 53 male patients) referred for cardiac MR imaging because of coronary artery disease (n = 40), cardiomyopathy (n = 14), congenital anomaly (n = 17), or "other" (n = 7). Examination duration was recorded, and the image quality for each coronary segment was assessed with consensus reading. Vessel sharpness, length, and diameter were measured. Quantitative values in proximal, middle, and distal segments were compared by using analysis of variance and t tests. A double-blinded comparison with the results of x-ray angiography was performed when such results were available. RESULTS: When patients with different indications for cardiac MR imaging were examined with self-navigated postcontrast coronary MR angiography, whole-heart data sets with 1.15-mm isotropic spatial resolution were acquired in an average of 7.38 minutes ± 1.85. The main and proximal coronary segments could be visualized in 92.3% of cases, while the middle and distal segments could be visualized in 84.0% and 55.8% of cases, respectively. Subjective scores and vessel sharpness were significantly higher in the proximal segments than in the middle and distal segments (P < .05). Anomalies of the coronary arteries could be confirmed or excluded in all cases. Per-vessel sensitivity and specificity for stenosis detection were 64.7% and 85.0%, respectively, in the 31 patients for whom reference standard x-ray coronary angiography results were available. CONCLUSION: The self-navigated coronary MR angiography sequence shows promise for coronary imaging. However, technical improvements are needed to improve image quality, especially in the more distal coronary segments.
Resumo:
Hypermedia systems based on the Web for open distance education are becoming increasinglypopular as tools for user-driven access learning information. Adaptive hypermedia is a new direction in research within the area of user-adaptive systems, to increase its functionality by making it personalized [Eklu 961. This paper sketches a general agents architecture to include navigationaladaptability and user-friendly processes which would guide and accompany the student during hislher learning on the PLAN-G hypermedia system (New Generation Telematics Platform to Support Open and Distance Learning), with the aid of computer networks and specifically WWW technology [Marz 98-1] [Marz 98-2]. The PLAN-G actual prototype is successfully used with some informatics courses (the current version has no agents yet). The propased multi-agent system, contains two different types of adaptive autonomous software agents: Personal Digital Agents {Interface), to interacl directly with the student when necessary; and Information Agents (Intermediaries), to filtrate and discover information to learn and to adapt navigation space to a specific student
Resumo:
This work provides a general description of the multi sensor data fusion concept, along with a new classification of currently used sensor fusion techniques for unmanned underwater vehicles (UUV). Unlike previous proposals that focus the classification on the sensors involved in the fusion, we propose a synthetic approach that is focused on the techniques involved in the fusion and their applications in UUV navigation. We believe that our approach is better oriented towards the development of sensor fusion systems, since a sensor fusion architecture should be first of all focused on its goals and then on the fused sensors
Resumo:
Path planning and control strategies applied to autonomous mobile robots should fulfil safety rules as well as achieve final goals. Trajectory planning applications should be fast and flexible to allow real time implementations as well as environment interactions. The methodology presented uses the on robot information as the meaningful data necessary to plan a narrow passage by using a corridor based on attraction potential fields that approaches the mobile robot to the final desired configuration. It employs local and dense occupancy grid perception to avoid collisions. The key goals of this research project are computational simplicity as well as the possibility of integrating this method with other methods reported by the research community. Another important aspect of this work consist in testing the proposed method by using a mobile robot with a perception system composed of a monocular camera and odometers placed on the two wheels of the differential driven motion system. Hence, visual data are used as a local horizon of perception in which trajectories without collisions are computed by satisfying final goal approaches and safety criteria
Resumo:
This article presents recent WMR (wheeled mobile robot) navigation experiences using local perception knowledge provided by monocular and odometer systems. A local narrow perception horizon is used to plan safety trajectories towards the objective. Therefore, monocular data are proposed as a way to obtain real time local information by building two dimensional occupancy grids through a time integration of the frames. The path planning is accomplished by using attraction potential fields, while the trajectory tracking is performed by using model predictive control techniques. The results are faced to indoor situations by using the lab available platform consisting in a differential driven mobile robot
Resumo:
The absolute necessity of obtaining 3D information of structured and unknown environments in autonomous navigation reduce considerably the set of sensors that can be used. The necessity to know, at each time, the position of the mobile robot with respect to the scene is indispensable. Furthermore, this information must be obtained in the least computing time. Stereo vision is an attractive and widely used method, but, it is rather limited to make fast 3D surface maps, due to the correspondence problem. The spatial and temporal correspondence among images can be alleviated using a method based on structured light. This relationship can be directly found codifying the projected light; then each imaged region of the projected pattern carries the needed information to solve the correspondence problem. We present the most significant techniques, used in recent years, concerning the coded structured light method
Resumo:
Over the past decade, significant interest has been expressed in relating the spatial statistics of surface-based reflection ground-penetrating radar (GPR) data to those of the imaged subsurface volume. A primary motivation for this work is that changes in the radar wave velocity, which largely control the character of the observed data, are expected to be related to corresponding changes in subsurface water content. Although previous work has indeed indicated that the spatial statistics of GPR images are linked to those of the water content distribution of the probed region, a viable method for quantitatively analyzing the GPR data and solving the corresponding inverse problem has not yet been presented. Here we address this issue by first deriving a relationship between the 2-D autocorrelation of a water content distribution and that of the corresponding GPR reflection image. We then show how a Bayesian inversion strategy based on Markov chain Monte Carlo sampling can be used to estimate the posterior distribution of subsurface correlation model parameters that are consistent with the GPR data. Our results indicate that if the underlying assumptions are valid and we possess adequate prior knowledge regarding the water content distribution, in particular its vertical variability, this methodology allows not only for the reliable recovery of lateral correlation model parameters but also for estimates of parameter uncertainties. In the case where prior knowledge regarding the vertical variability of water content is not available, the results show that the methodology still reliably recovers the aspect ratio of the heterogeneity.