972 resultados para RESIN RESTORATIONS
Resumo:
The aim of this in vitro study was to evaluate the effect of different bur types and acid etching protocols on the shear bond strength (SBS) of a resin modified glass ionomer cement (RM-GIC) to primary dentin. Forty-eight clinically sound human primary molars were selected and randomly assigned to four groups (n=12). In G1, the lingual surface of the teeth was cut with a carbide bur until a 2.0-mm-diameter dentin area was exposed, followed by the application of RM-GIC (Vitremer - 3M/ESPE) prepared according to the manufacturer's instructions. The specimens of G2, received the same treatment of G1, however the dentin was conditioned with phosphoric acid. In groups G3 and G4 the same procedures of G1 and G2 were conducted respectively, nevertheless dentin cutting was made with a diamond bur. The specimens were stored in distilled water at 37 degrees C for 24h, and then tested in a universal testing machine. SBS. data were submitted to 2-way ANOVA (= 5%) and indicated that SBS values of RM-GIC bonded to primary dentin cut with different burs were not statistically different, but the specimens that were conditioned with phosphoric acid presented SBS values significantly higher that those without conditioning. To observe micromorphologic characteristics of the effects of dentin surface cut by diamond or carbide rotary instruments and conditioners treatment, some specimens were examined by scanning electron microscopy. Smear layer was present in all specimens regardless of the type of rotary instrument used for dentin cutting, and specimens etched with phosphoric acid presented more effective removal of smear layer. It was concluded that SBS of a RM-GIC to primary dentin was affected by the acid conditioning but the bur type had no influence.
Resumo:
Statement of problem. Two problems found in prostheses with soft liners are bond failure to the acrylic resin base and loss of elasticity due to material aging.Purpose. This in vitro study evaluated the effect of thermocycling on the bond strength and elasticity of 4 long-term soft denture liners to acrylic resin bases.Material and methods. Four soft lining materials (Molloplast-B, Flexor, Permasoft, and Pro Tech) and 2 acrylic resins (Classico, and Lucitone 199) were processed for testing according to manufacturers' instructions. Twenty rectangular specimens (10 X 10-mm(2) cross-sectional area) and twenty cylinder specimens (12.7-mm diameter X 19.0-mm height) for each liner/resin combination were used for the tensile and deformation tests, respectively. Specimen shape and liner thickness were standardized. Samples were divided into a test group that was thermocycled 3000 times and a control group that was stored for 24 hours in water at 37degreesC. Mean bond strength, expressed in megapascals (Wa), was determined in the tensile test with the use of a universal testing machine at a crosshead speed of 5 mm/min. Elasticity, expressed as percent of permanent deformation, was calculated with an instrument for measuring permanent deformation described in ADA/ANSI specification 18. Data from both tests were examined with 1-way analysis of variance and a Tukey test, with calculation of a Scheffe interval at a 95% confidence level.Results. In the tensile test under control conditions, Molloplast-B (1.51 +/- 0.28 MPa [mean SD]) and Pro Tech (1.44 +/- 0.27 MPa) liners had higher bond strength values than the others (P < .05). With regard to the permanent deformation test, the lowest values were observed for Molloplast-B (0.48% +/- 0.19%) and Flexor (0.44% +/- 0.14%) (P < .05). Under thermocycling conditions, the highest bond strength occurred with Molloplast-B (1.37 +/- 0.24 MPa) (P < .05) With regard to the deformation test, Flexor (0.46% +/- 0.13%) and Molloplast-B (0.44% +/- 0.17%) liners had lower deformation values than the others (P < .05).Conclusion. The results of this in vitro study indicated that bond strength and permanent deformity values of the 4 soft denture liners tested varied according to their chemical composition. These tests are not completely valid for application to dental restorations because the forces they encounter are more closely related to shear and tear. However, the above protocol serves as a good method of investigation to evaluate differences between thermocycled and control groups.
Resumo:
Purpose: To test the null hypothesis that beveling and/or etching enamel would not affect the 18-month clinical performance of the self-etching adhesive Clearfil SE Bond (CSEB) in noncarious cervical lesions (NCCL). Methods: With Institutional Review Board approval, 34 patients were enrolled in this study. A total of 120 NCCL was selected and assigned to four groups: (1) CSEB was applied without any cavity preparation; (2) CSEB was applied after beveling enamel; (3) CSEB was applied after etching enamel for 15 seconds with 35% phosphoric acid; (4) CSEB was applied after beveling and etching enamel. A microfilled composite resin was used for all restorations. Resuts: At 6 months after initial placement, 120 restorations (a 100% recall rate) were evaluated. At 18 months, 87 restorations (a 72.5% recall rate) were available for evaluation. A survival rate of 100% was measured for all groups at both 6 and 18 months. Sensitivity to air decreased significantly only for Group 3 (no bevel+acid etch) from baseline to 18 months without statistical changes from 6 months to 18 months. None of the other parameters resulted in significant differences for any of the four groups. However, when data were pooled, both the overall marginal discoloration and the overall marginal adaptation were significantly worse at 18 months than at baseline, while sensitivity to air decreased significantly from baseline to 18 months. The 18-month survival rate of the self-etching adhesive Clearfil SE Bond was not improved by enamel bevel or by enamel etching. Both overall marginal adaptation and overall marginal discoloration were worse at 18 months than at baseline.
Resumo:
The objective of the present study was to evaluate two different types of root canal sealers: AH Plus (an epoxy resin-based sealer) and Fill Canal (a zinc oxide-eugenol based sealer). A total of 34 root canals with vital pulp from dogs' premolars were used. After instrumentation, the root canals were filled with gutta-percha and AH Plus or gutta-percha and Fill Canal sealers using a classical technique of lateral condensation. After histological processing, the sections were stained with hematoxylineosin or Mallory's trichrome stain. Inflammatory cells or areas of necrosis were not associated with AH Plus. Hard tissue formation apically to the material was observed in 14 specimens. The Fill Canal sealer presented an inflammatory response of moderate intensity in the periapical region, mainly adjacent to the material.
Resumo:
Resin solvation properties affect the efficiency of the coupling reactions in solid-phase peptide synthesis. Here we report a novel approach to evaluate resin solvation properties, making use of spin label electron paramagnetic resonance (EPR) spectroscopy. The aggregating VVLGAAIV and ING sequences were assembled in benzhydrylamine-resin with different amino group contents (up to 2.6 mmol/g) to examine the extent of chain association within the beads. These model peptidyl-resins were first labeled at their N-terminus with the amino acid spin label 2,2,6,6-tetramethylpiperidine-N-oxyl-4-amino-4-carboxylic acid (Toac). Their solvation properties in different solvents were estimated, either by bead swelling measurement or by assessing the dynamics of their polymeric matrixes through the analysis of Toac EPR spectra, and were correlated with the yield of the acylation reaction. In most cases the coupling rate was found to depend on bead swelling. Comparatively, the EPR approach was more effective. Line shape analysis allowed the detection of more than one peptide chain population, which influenced the reaction. The results demonstrated the unique potential of EPR spectroscopy not only for improving the yield of peptide synthesis, even in challenging conditions, but also for other relevant polymer-supported methodologies in chemistry and biology.