895 resultados para REINFORCED PLA SCAFFOLDS
Resumo:
This paper presents an experimental research on the use of eddy current testing (ECT) and artificial neural networks (ANNs) in order to identify the gauge and position of steel bars immersed in concrete structures. The paper presents details of the ECT probe and concrete specimens constructed for the tests, and a study about the influence of the concrete on the values of measured voltages. After this, new measurements were done with a greater number of specimens, simulating a field condition and the results were used to generate training and validation vectors for multilayer perceptron ANNs. The results show a high percentage of correct identification with respect to both, the gauge of the bar and of the thickness of the concrete cover. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Siloxane-polymethyl methacrylate hybrid films containing functionalized multiwall carbon nanotubes (CNTs) were deposited by dip-coating on carbon steel substrates from a sol prepared by radical polymerization of methyl methacrylate and 3-methacryloxy propyl-trimethoxysilane, followed by hydrolytic co-polycondensation of tetraethoxysilane. The correlation between the structural properties and corrosion protection efficiency was studied as a function of the molar ratio of nanotubes carbon to silicon, varied in the range between 0.1% and 5%. 29Si nuclear magnetic resonance and thermogravimetric measurements have shown that hybrids containing carbon nanotubes have a similar degree of polycondensation and thermal stability as the undoped matrix and exhibit and excellent adhesion to the substrate. Microscopy and X-ray photoelectron spectroscopy results revealed a very good dispersion of carbon nanotubes in the hybrid matrix and the presence of carboxylic groups allowing covalent bonding with the end-siloxane nodes. Potentiodynamic polarization curves and electrochemical impedance spectroscopy results demonstrate that CNTs containing coatings maintain the excellent corrosion protection efficiency of the hybrids, showing even a superior performance in acidic solution. The nanocomposite structure acts as efficient corrosion barrier, increasing the total impedance by 4 orders of magnitude and reducing the current densities by more than 3 orders of magnitude, compared to the bare steel electrode. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The effect of carbon fiber surface characteristics on flexural properties of structural composites is studied in this work. Two types of intermediate modulus carbon fibers were used: T800HB and IM7. Results revealed that higher mechanical properties are linked with higher interfacial adhesion. Morphologies and chemical compositions of commercial carbon fibers (CF) were characterized by Fourier Transformed Infra Red (FTIR) and Scanning Electronic Microscopy (SEM). Comparing the results, the T800HB apparently has more roughness, since the IM7 seems to be recovered for a polymeric film. On other hand, the IM7 one shows higher interactivity with epoxy resin system Cycom 890 RTM. Composites produced with Resin Transfer Molding (RTM) were tested on a flexural trial. Interfacial adhesion difference was showed with SEM and Dynamic Mechanical Analyses (DMA), justifying the higher flexural behavior of composites made with IM7 fibers. © 2013 Elsevier B.V. All rights reserved.
Resumo:
In this study, nanocomposites of PLA and organoclays Cloisite 20A and Cloisite 30B were prepared by the melt intercalation method and the obtained samples were characterized by transmission electron microscopy (TEM). Since composting is an important proposal to the final disposal of biopolymers, the influence of clays on the hydrolytic degradation process of PLA was evaluated by visual analysis and monitoring of molecular weight after periods of 15 and 30 days of degradation in compost. After degradation of the materials in composting environment, the evaluation of cytotoxic, genotoxic and mutagenic effects of compost aqueous extract was carried out using a bioassay with Allium cepa as test organism. The TEM micrographs permitted the observation of different levels of dispersion, including exfoliated regions. In the evaluation of hydrolytic degradation it was noted that the presence of organoclays can decrease the rate of degradation possibly due to the barrier effect of clay layers and/or the higher degree of crystallinity in the nanocomposite samples. Nevertheless, even in the case of nanocomposites, the molecular weight reduction was significant, indicating that the composting process is favorable to the chain scission of PLA in studied materials. In the analysis performed by the bioassay using A. cepa as test organism, it was found that after degradation of the PLA and its nanocomposites the aqueous extract of compost samples induced a decreasing in the mitotic index and an increasing in the induction of chromosomal abnormalities. These results were statistically significant in relation to the negative control (distilled water). By comparing the results obtained for the nanocomposites in relative to pure polymer, there were no statistically significant differences. The types of the observed chromosomal aberrations indicated a possible genotoxic effect of the materials, which may be related to an aneugenic action of PLA degradation products. © 2013 Springer Science+Business Media New York.
Resumo:
The corrosion behaviour of metal matrix composites (MMCs) is strictly linked with the presence of heterogeneities such as reinforcement phase, microcrevices, porosity, secondary phase precipitates, and interaction products. Most of the literature related to corrosion behaviour of aluminium matrix composites (AMCs) is focused on SiC reinforced AMCs. On the other hand, there is very limited information available in the literature related to the tribocorrosion behaviour of AMCs. Therefore, the present work aims to investigate corrosion and tribocorrosion behaviour of Al-Si-Cu-Mg alloy matrix composites reinforced with B4C particulates. Corrosion behaviour of 15 and 19% (vol) B4C reinforced Al-Si-Cu-Mg matrix composites and the base alloy was investigated in 0.05M NaCl solution by performing immersion tests and potentiodynamic polarisation tests. Tribocorrosion behaviour of Al-Si-Cu-Mg alloy and its composites were also investigated in 0.05M NaCl solution. The tests were carried out against alumina ball using a reciprocating ball-on-plate tribometer. Electrochemical measurements were performed before, during, and after the sliding tests together with the recording of the tangential force. Results suggest that particle addition did not affect significantly the tendency of corrosion of Al-Si-Cu-Mg alloy without mechanical interactions. During the tribocorrosion tests, the counter material was found to slide mainly on the B4C particles, which protected the matrix alloy from severe wear damage. Furthermore, the wear debris were accumulated on the worn surfaces and entrapped between the reinforcing particles. Therefore, the tendency of corrosion and the corrosion rate decreased in Al-Si-Cu-Mg matrix B4C reinforced composites during the sliding in 0.05M NaCl solution. © 2013 Elsevier B.V.
Resumo:
The concern related to solid waste increases efforts to develop products based on biodegradable materials. At present, PLA has one of the highest potentials among biopolyesters, particularly for packaging. However, its application is limited in some fields. In order to optimize PLA properties, organo-modified montmorilonites have been extensively used to obtain nanocomposites. Although PLA nanocomposites studies are widely reported in the literature, there is still few information about the influence of organoclays on de biodegradation process, which is a relevant information, since one of the main purposals related to the final disposal of biopolymers as PLA is composting. Besides, in the last years some research has been conducted in order to evaluate the potential toxicity of montmorilonite, unmodified or organo-modified. Since the use of montmorilonite is expanding in different applications, human exposure and risk assessment are important issues to be investigated. In this context, this review intends to compile available information related to common organoclays used for PLA nanocomposites, its properties, biodegradation analysis and potential toxicity evaluation of nanocomposites, focused on montmorilonite as filler. Two issues of relevance were pointed out. The first is food safety and quality, and the second consideration is the environmental effect. © 2013 Springer Science+Business Media New York.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Odontologia - FOA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this study nanocomposites of PLA and organoclays Cloisite 20A and Cloisite 30B were prepared by melt intercalation. The influence from the organoclays on the biodegradation of PLA was evaluated based on the respirometry method. The incorporation of clay Cloisite 20A did not change the mineralization curve of PLA. The nanocomposite with Cloisite 30B, on the other hand, presented a different behavior, indicating a delay in the polymer biodegradation. The materials were characterized by X-ray Diffraction, Thermogravimetric Analysis and Differential Scanning Calorimetry. The materials characterization indicated nanocomposites with an intercalated structure as well as reduced thermal stability and a slight increase in the degree of crystallinity compared to the pure polymer.
Resumo:
This paper presents a study case in which a geosynthetic-reinforced soil (GRS) structure was used to rebuild a 12 m high slope after its failure. The failed slope is located between the parking lot of a private company and a public school. Due to surrounding structures restrictions, this project required a solution with rapidity in execution. In addition, as a requirement established by its owner, this structure should recover the original geometry of the slope. Besides the importance regarding surrounding constructions, an interesting aspect of this study case relies on the versatility of geosynthetic materials. A woven geotextile was used as reinforcement. Five other geosynthetic materials were used in this study case. Facing comprised a geocell filled with local soil cover and grass mats, resulting in a green facing. A geonet was used to hold the grass mats in place before grass roots development. Regarding the drainage system, geocomposite drains and geopipes were installed to drain subsurface water. A nonwoven geotextile was used as filter in drainage trenches, which were placed near the structure toe. Additionally to the GRS structure, the lower portion of the slope was reinforced with soil nailing technique. The face of the nailed soil portion was covered with sandbags and shotcrete. It emphasizes the flexibility of GRS structures regarding their application with other technical options in Geotechnical Engineering. The economic aspect of this study case also deserves attention. It did not require soil transportation and other design and construction steps, e.g. concrete structures design and construction.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Bacterial cellulose (BC) has become established as a remarkably versatile biomaterial and can be used in a wide variety of scientific applications, especially for medical devices. In this work, the bacterial cellulose fermentation process is modified by the addition of chondroitin sulfate (1% w/w) to the culture medium before the bacteria are inoculated. Besides, biomimetic precipitation of calcium phosphate of biological interest from simulated body fluid on bacterial cellulose was studied. Chondroitin sulfate influences in bacterial cellulose were analyzed using transmission infrared spectroscopy (FTIR), XRD (X-ray diffraction) and scanning electron microscopy (SEM). FTIR analysis showed interaction between chondroitin sulfate, bacterial cellulose and calcium phosphate and XRD demonstrated amorphous calcium phosphate and carbonated apatite on bacterial cellulose nanocomposites. SEM images confirmed incorporation of calcium phosphate in bacterial celluloe nanocomposite surface and uniform spherical calcium phosphate particles. Future experiments with cells adhesion and viability are in course.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)