943 resultados para RADIATION-USE EFFICIENCY


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Maps depicting spatial pattern in the stability of summer greenness could advance understanding of how forest ecosystems will respond to global changes such as a longer growing season. Declining summer greenness, or “greendown”, is spectrally related to declining near-infrared reflectance and is observed in most remote sensing time series to begin shortly after peak greenness at the end of spring and extend until the beginning of leaf coloration in autumn,. Understanding spatial patterns in the strength of greendown has recently become possible with the advancement of Landsat phenology products, which show that greendown patterns vary at scales appropriate for linking these patterns to proposed environmental forcing factors. This study tested two non-mutually exclusive hypotheses for how leaf measurements and environmental factors correlate with greendown and decreasing NIR reflectance across sites. At the landscape scale, we used linear regression to test the effects of maximum greenness, elevation, slope, aspect, solar irradiance and canopy rugosity on greendown. Secondly, we used leaf chemical traits and reflectance observations to test the effect of nitrogen availability and intrinsic water use efficiency on leaf-level greendown, and landscape-level greendown measured from Landsat. The study was conducted using Quercus alba canopies across 21 sites of an eastern deciduous forest in North America between June and August 2014. Our linear model explained greendown variance with an R2=0.47 with maximum greenness as the greatest model effect. Subsequent models excluding one model effect revealed elevation and aspect were the two topographic factors that explained the greatest amount of greendown variance. Regression results also demonstrated important interactions between all three variables, with the greatest interaction showing that aspect had greater influence on greendown at sites with steeper slopes. Leaf-level reflectance was correlated with foliar δ13C (proxy for intrinsic water use efficiency), but foliar δ13C did not translate into correlations with landscape-level variation in greendown from Landsat. Therefore, we conclude that Landsat greendown is primarily indicative of landscape position, with a small effect of canopy structure, and no measureable effect of leaf reflectance. With this understanding of Landsat greendown we can better explain the effects of landscape factors on vegetation reflectance and perhaps on phenology, which would be very useful for studying phenology in the context of global climate change

Relevância:

80.00% 80.00%

Publicador:

Resumo:

L’utilisation rationnelle de l’eau est une préoccupation croissante. Il importe d’optimiser la gestion des irrigations du fraisier à jours neutres afin de répondre adéquatement au besoin de la plante tout en diminuant la pression du secteur agricole sur l’eau. Dans les sols de l’île d’Orléans, la fraction des particules de sol supérieure à 2 mm peut varier de 15 à 30%. L’eau s’écoule principalement verticalement sous le tube de goutte-à-goutte et le mouvement vertical rapide de l’eau entraine un assèchement du sol en bordure de l’andain et une perte de nutriments. Diverses techniques combinées à l’utilisation de tensiomètres peuvent être envisagées afin d’améliorer l’efficacité d’utilisation de l’eau d’irrigation (EUEI) dans ce type de sol. L’irrigation fractionnée, l’ajustement du seuil de déclenchement de l’irrigation selon l’ETc prévisionnelle, l’installation de matelas capillaires sous la zone racinaire et un système de production hors-sol sur butte profilée ont été testés. Le projet avait pour objectif de déterminer l’effet des techniques présentées sur le développement des fraisiers à jours neutres, le rendement, la qualité des fruits, l’EUEI et les propriétés physico-chimiques du sol. Un dispositif en bloc aléatoire comportant cinq traitements a été mis en place à Saint-Jean-de-l’Île-d’Orléans durant deux saisons de production. Le fractionnement de l’irrigation et le système de production hors-sol ont engendré une augmentation non significative du rendement vendable de 10% et 12%, respectivement, par rapport au traitement témoin. Le système hors-sol a toutefois permis d’augmenter significativement de 86% le rendement vendable durant le premier mois de production. L’EUEI a été améliorée par tous les traitements. En raison de sa simplicité et de sa tendance à augmenter le rendement, l’irrigation fractionnée est recommandée pour le type de sol à l’étude.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Terrestrial and oceanic biomass carbon sinks help reduce anthropogenic CO2 emissions and mitigate the long-term effect of increasing atmospheric CO2. Woody plants have large carbon pools because of their long residence time, however N availability can negatively impact tree responses to elevated CO2. Seasonal cycling of internal N in trees is a component that contributes to fitness especially in N limited environments. It involves resorption from senescing leaves of deciduous trees and storage as vegetative storage proteins (VSP) in perennial organs. Populus is a model organism for tree biology that efficiently recycles N. Bark storage proteins (BSP) are the most abundant VSP that serves as seasonal N reserves. Here I show how poplar growth is influenced by N availability and how growth is influenced by shoot competition for stored N reserves. I also provide data that indicates that auxin mediates BSP catabolism during renewed shoot growth. Understanding the components of N accumulation, remobilization and utilization can provide insights leading to increasing N use efficiency (NUE) of perennial plants.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The identification of genotypes for drought tolerance has a great importance in breeding programs. The aim of this study was to characterize genotypes of beans in response to drought tolerance in different reproductive stages through physiologic, agronomic and molecular analysis. The experiment was conducted in greenhouse, using a randomized block design with four replicates; 10 cultivars: ANFC 9, ANFP 110, BRS Esplendor, BRSMG Realce, IPR Siriri, IPR Tangará, IPR Tuiuiu, IPR Uirapuru, IAC Imperador and IAC Milênio under two conditions of irrigation: plants irrigated during their entire life cycle, and plants under irrigation suppression in the reproductive stage (R7) until 16% of field capacity, when the irrigation was restored. In the last four days of stress, the gas exchanges were analyzed, and in the last day of stress was analyzed the percentage of closed stomata in the abaxial surface of the leaves, collected in different times of the day (9h, 12h, 15h and 18h). Additionally, plant samples were collected for the following analysis: fresh and dry mass of leaves, stems and legumes, and proline content in leaves and roots. The plants were harvested at the physiological maturity and the yield components and grain yield were determined. In addition, in order to identify polymorphisms in the sequences of promoters and genes related to drought, seven pairs of primers were tested on the group of genotypes. The drought susceptibility indexes (ISS) ranged from 0.65 to 1.10 in the group of genotypes, which the lowest values observed were for IAC Imperador (0.65) and BRS Esplendor (0.87), indicating the ability of these two genotypes to maintain grain yield under water stress condition. All genotypes showed reduction in yield components under water stress. IAC Imperador (43.4%) and BRS Esplendor (60.6%) had the lowest reductions in productivity and kept about 50% of the stomata closed during all the different times evaluated at last day of irrigation suppression. IAC Imperador showed greater water use efficiency and CO2 assimilation rate under drought stress. IPR Tuiuiú, IPR Tangará and IAC Imperador had the highest proline concentrations in the roots. Under water stress condition, there was a strong positive correlation (0.696) between the percentage of stomata closed with the number of grains per plant (0.696) and the fresh mass of leaves (0.731), the maximum percentage of stomata closed 73.71% in water stress. The accumulation of proline in the root was the character that most contributed to the divergence between the genotypes under water deficit, but not always the genotypes that have accumulated more proline were the most tolerant. The polymorphisms in DNA of coding and promoting sequences of transcription factors studied in this experiment did not discriminate tolerant genotypes from the sensitive ones to water stress.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Soil N availability is constrained by the breakdown of N-containing polymers such as proteins to oligopeptides and amino acids that can be taken up by plants and microorganisms. Excess N is released from microbial cells as ammonium (N mineralization), which in turn can serve as substrate for nitrification. According to stoichiometric theory, N mineralization and nitrification are expected to increase in relation to protein depolymerization with decreasing N limitation, and thus from higher to lower latitudes and from topsoils to subsoils. To test these hypotheses, we compared gross rates of protein depolymerization, N mineralization and nitrification (determined using N-15 pool dilution assays) in organic topsoil, mineral topsoil, and mineral subsoil of seven ecosystems along a latitudinal transect in western Siberia, from tundra (67 degrees N) to steppe (54 degrees N). The investigated ecosystems differed strongly in N transformation rates, with highest protein depolymerization and N mineralization rates in middle and southern taiga. All N transformation rates decreased with soil depth following the decrease in organic matter content. Related to protein depolymerization, N mineralization and nitrification were significantly higher in mineral than in organic horizons, supporting a decrease in microbial N limitation with depth. In contrast, we did not find indications for a decrease in microbial N limitation from arctic to temperate ecosystems along the transect. Our findings thus challenge the perception of ubiquitous N limitation at high latitudes, but suggest a transition from N to C limitation of microorganisms with soil depth, even in high-latitude systems such as tundra and boreal forest.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nitrogen (N) is an essential plant nutrient in maize production, and if considering only natural sources, is often the limiting factor world-wide in terms of a plant’s grain yield. For this reason, many farmers around the world supplement available soil N with synthetic man-made forms. Years of over-application of N fertilizer have led to increased N in groundwater and streams due to leaching and run-off from agricultural sites. In the Midwest Corn Belt much of this excess N eventually makes its way to the Gulf of Mexico leading to eutrophication (increase of phytoplankton) and a hypoxic (reduced oxygen) dead zone. Growing concerns about these types of problems and desire for greater input use efficiency have led to demand for crops with improved N use efficiency (NUE) to allow reduced N fertilizer application rates and subsequently lower N pollution. It is well known that roots are responsible for N uptake by plants, but it is relatively unknown how root architecture affects this ability. This research was conducted to better understand the influence of root complexity (RC) in maize on a plant’s response to N stress as well as the influence of RC on other above-ground plant traits. Thirty-one above-ground plant traits were measured for 64 recombinant inbred lines (RILs) from the intermated B73 & Mo17 (IBM) population and their backcrosses (BCs) to either parent, B73 and Mo17, under normal (182 kg N ha-1) and N deficient (0 kg N ha-1) conditions. The RILs were selected based on results from an earlier experiment by Novais et al. (2011) which screened 232 RILs from the IBM to obtain their root complexity measurements. The 64 selected RILs were comprised of 31 of the lowest complexity RILs (RC1) and 33 of the highest complexity RILs (RC2) in terms of root architecture (characterized as fractal dimensions). The use of the parental BCs classifies the experiment as Design III, an experimental design developed by Comstock and Robinson (1952) which allows for estimation of dominance significance and level. Of the 31 traits measured, 12 were whole plant traits chosen due to their documented response to N stress. The other 19 traits were ear traits commonly measured for their influence on yield. Results showed that genotypes from RC1 and RC2 significantly differ for several above-ground phenotypes. We also observed a difference in the number and magnitude of N treatment responses between the two RC classes. Differences in phenotypic trait correlations and their change in response to N were also observed between the RC classes. RC did not seem to have a strong correlation with calculated NUE (ΔYield/ΔN). Quantitative genetic analysis utilizing the Design III experimental design revealed significant dominance effects acting on several traits as well as changes in significance and dominance level between N treatments. Several QTL were mapped for 26 of the 31 traits and significant N effects were observed across the majority of the genome for some N stress indicative traits (e.g. stay-green). This research and related projects are essential to a better understanding of plant N uptake and metabolism. Understanding these processes is a necessary step in the progress towards the goal of breeding for better NUE crops.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The influences of clearing native vegetation (Caatinga) in contour strips at 25 cm vertical interval on evaporation losses in cleared strips, annual runoff efficiency and annuall soil loss on gently sloped micro-waterheds in the arid zones of Northeast Brazil are reported. The alternate native vegetation (Caatinga) strips function very effectively as windbreaks thus reducing evaporation losses substantially in the leeward cleared strips. The runoff measured at the micro-watershed with cleared strips was many-fold lower than the runoff obtained at a completely denuded watershed even when it was protected by narrow based channel terraces. However, the annual runoff efficiency can be significantly increased in a strip cleared watershed if narrow based channel terraces are provided on the lower side of cleared strips. The annual soil losses in strip cleared watersheds as well as completely denuded waterhed of gentle slopes were negligible. Thus clearing land in alternate contour strips on a micro-watersheds shall substantially improve crop water use efficiency without creating any significant erosion problems. Additionally this treatment will increase runoff for water harvesting for irrigation purposes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of green manures (GMs) in combination with nitrogen (N) fertilizer application is a promising practice to improve N fertilizer management in agricultural production systems. The main objective of this study was to evaluate the N use efficiency (NUE) of rice plant, derived from GMs including sunn hemp (Crotalaria juncea L.), millet (Pennisetum glaucum L.) and urea in the greenhouse. The experimental treatments included two GMs (sunn hemp-15N and millet-15N), absence of N organic source (without GM residues in soil) and four N rates, as urea-15N (0, 28.6, 57.2 and 85.8 mg N kg-1). The results showed that both rice grain and straw biomass yields under sunn hemp were greater than that of millet or without the application of GM. The NUE of rice under sunn hemp was greater than that under millet (18.9 and 7.8% under sunn hemp and millet, respectively). The urea N application rates did not affect the fertilizer NUE by rice (53.7%) with or without GMs. The NUE of GMs by rice plants ranged from 14.1% and 16.8% for root and shoot, respectively. The study showed that green manures can play an important role in enhancing soil fertility and N supply to subsequent crops.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A better understanding of grapevine responses to drought and high air temperatures can help to optimize vineyard management to improve water use efficiency, yield and berry quality. Faster and robust field phenotyping tools are needed in modern precision viticulture, in particular in dry and hot regions such as the Mediterranean. Canopy temperature (Tc) is commonly used to monitor water stress in plants/crops and to characterize stomatal physiology in different woody species including Vitis vinifera. Thermography permits remote determination of leaf surface or canopy temperature in the field and also to assess the range and spatial distribution of temperature from different parts of the canopies. Our hypothesis is that grapevine genotypes may show different Tc patterns along the day due to different stomatal behaviour and heat dissipation strategies. We have monitored the diurnal and seasonal course of Tc in two grapevine genotypes, Aragonez (syn. Tempranillo) and Touriga Nacional subjected to deficit irrigation under typical Mediterranean climate conditions. Temperature measurements were complemented by determination of the diurnal course of leaf water potential (ψleaf) and leaf gas exchange. Measurements were done in two seasons (2013 and 2014) at different phenological stages: i) mid-June (green berry stage), ii) mid-July (veraison), iii) early August (early ripening) and iv) before harvest (late ripening). Correlations between Tc and minimal stomatal conductance will be presented for the two genotypes along the day. Results are discussed over the use of thermal imagery to derive information on genotype physiology in response to changing environmental conditions and to mild water stress induced by deficit irrigation. Strategies to optimize the use of thermal imaging in field conditions are also proposed

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Scarcity of freshwater due to recurrent drought threatens the sustainable crop production in semi-arid regions of Ethiopia. Deficit irrigation is thought to be one of the promising strategies to increase water use efficiency (WUE) under scarce water resources. A study was carried out to investigate the effect of alternate furrow irrigation (AFI), deficit irrigation (DI) and full irrigation (FI) on marketable fruit yield, WUE and physio-chemical quality of four fresh-market tomato cultivars (Fetan, Chali, Cochoro and ARP Tomato d2) in 2013 and 2014. The results showed that marketable yield, numbers of fruits per plant and fruit size were not significantly affected by AFI and DI irrigations. WUE under AFI and DI increased by 36.7% and 26.1%, respectively with close to 30% irrigation water savings achieved. A different response of cultivars to irrigation treatments was found for marketable yield, number of fruits and fruit size, WUE, total soluble solids (TSS) of the fruit juice, titratable acids (TA) and skin thickness. Cochoro and Fetan performed well under both deficit irrigation treatments exhibited by bigger fruit size which led to higher WUE. ARP Tomato d2 showed good yields under well-watered conditions. Chali had consistently lower marketable fruit yield and WUE. TSS and TA tended to increase under deficit irrigation; however, the overall variations were more explained by irrigation treatments than by cultivars. It was shown that AFI is a suitable deficit irrigation practice to increase fresh yield, WUE and quality of tomato in areas with low water availability. However, AFI requires suitable cultivars in order to exploit its water saving potential.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Understanding the variation in physiological response to deficit irrigation together with better knowledge on physiological characteristics of different genotypes that contribute to drought adaptation mechanisms would be helpful in transferring different irrigation technologies to farmers. A field experiment was carried to investigate the physiological response of four tomato cultivars (Fetan, Chali, Cochoro and ARP Tomato d2) to moderate water deficit induced by alternate furrow irrigation (AFI) and deficit irrigation (DI) under semi-arid condition of Ethiopia during 2013 and 2014. The study also aimed at identifying physiological attributes to the fruit yield of tomato under different deficit irrigation techniques. A factorial combination of irrigation treatments and cultivar were arranged in a complete randomized design with three replicates. Results showed that stomatal conductance (g_s) was significantly reduced while photosynthetic performance measured as chlorophyll fluorescence (Fv’/Fm’), relative water content (RWC) and leaf ash content remained unaffected under deficit irrigations. Significant differences among cultivars were found for water use efficiency (WUE), g_s, chlorophyll content (Chl_SPAD), normal difference vegetation index (NDVI), leaf ash content and fruit growth rate. However, cultivar differences in WUE were more accounted for by the regulation of g_s, therefore, g_s could be useful for breeders for screening large numbers of genotypes with higher WUE under deficit irrigation condition. The study result also demonstrated that cultivar with traits that contribute to achieve higher yields under deficit irrigation strategies has the potential to increase WUE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Greenhouse production is a very important activity in the West region of Portugal, with an area of approximately 800 ha where the regular production consists in two crops per year, one in winter-spring and the other in summer-autumn. Many growers are now prepared to better exploit market opportunities, since they know that the big export window opportunity is from June to September, when the production is difficult in other regions of south due to high temperatures. Grower’s use new and more productive varieties, either in soil or hydroponic systems, mostly in unheated greenhouses, naturally ventilated, and equipped with modern fertigation systems. Greenhouse production causes some environmental impacts due to the high use of inputs. Several improvements in technologies and crop practices may contribute to increase the use efficiency of resources, decreasing the negative environmental impacts. Greenhouse vegetable production in Northern EU countries is based on the supply of heating and differs significantly from the production system in the Southern EU countries. In the Northern countries, direct energy inputs, mostly for heating, are predominant while in the South the indirect energy input is also important, mainly associated with fertilizers, plastic cover materials and other auxiliary materials. The main objective of this work was to characterise the greenhouse production systems in the West region of Portugal, in order to evaluate the energetic consumptions (direct and indirect), the GHH emissions, the production costs and the farmer’s income. With this work the mostly important inputs were identified, allowing proposing alternative measures to improve efficiency and sustainability. All the data was obtained by surveys performed directly with growers, previously selected to be representative of the crop practices and greenhouse type of the region. However, more research should be performed in order to develop and to test technologies capable to improve resources use efficiency in greenhouse production.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

tWater use control methods and water resources planning are of high priority. In irrigated agriculture, theright way to save water is to increase water use efficiency through better management. The present workvalidates procedures and methodologies using remote sensing to determine the water availability in thesoil at each moment, giving the opportunity for the application of the water depth strictly necessaryto optimise crop growth (optimum irrigation timing and irrigation amount). The analysis is applied tothe Irrigation District of Divor, Évora, using 7 experimental plots, which are areas irrigated by centre-pivot systems, cultivated to maize. Data were determined from images of the cultivated surface obtainedby satellite and integrated with atmosphere and crop parameters to calculate biophysical indicatorsand indices of water stress in the vegetation—Normalized Difference Vegetation Index (NDVI), Kc, andKcb. Therefore, evapotranspiration (ETc) was estimated and used to calculate crop water requirement,together with the opportunity and the amount of irrigation water to allocate. Although remote sensingdata available from satellite imagery presented some practical constraints, the study could contribute tothe validation of a new methodology that can be used for irrigation management of a large irrigated area,easier and at lower costs than the traditional FAO recommended crop coefficients method. The remotesensing based methodology can also contribute to significant saves of irrigation water.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Water is now considered the most important but vulnerable resource in the Mediterranean region. Nevertheless, irrigation expanded fast in the region (e.g. South Portugal and Spain) to mitigate environmental stress and to guarantee stable grape yield and quality. Sustainable wine production depends on sustainable water use in the wine’s supply chain, from the vine to the bottle. Better understanding of grapevine stress physiology (e.g. water relations, temperature regulation, water use efficiency), more robust crop monitoring/phenotyping and implementation of best water management practices will help to mitigate climate effects and will enable significant water savings in the vineyard and winery. In this paper, we focused on the major vulnerabilities and opportunities of South European Mediterranean viticulture (e.g. in Portugal and Spain) and present a multi-level strategy (from plant to the consumer) to overcome region’s weaknesses and support strategies for adaptation to water scarcity, promote sustainable water use and minimize the environmental impact of the sector.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Urea is the most used N fertilizer for upland rice, however, a great percentage of N loss can occur with the use of this fertilizer. The use of products that provide reduction of N loss for urea fertilizers can contribute to increase N use efficiency. The objective of this study was to determine the effect of N rates applied in the form of coated urea in the content and accumulation of N in dry biomass, apparent recovery of nitrogen and grain yield of upland rice. The experimental design was a randomized complete blocks arranged in a 4 x 3 + 1 factorial scheme. The treatments consisted of four sources of N fertilizer [1. Common urea; 2. Polymer-coated urea for slow release of N (PCU); 3. urea with the urease inhibitor N-(n-Butyl) thiophosphoric triamide (NBPT); and 4. urea coated with copper sulfate and boric acid as urease inhibitors (UCCB)], with three fertilization rates (30, 60 and 90 kg ha-1 of N). In addition, we included a control treatment without N application. Coated urea did not provide increases in rice grain yield in relation to common urea. The increasing amount of N resulted in significant increases in rice grain yield (from 3217 to 5548 kg ha-1, 2010/11, and from 3392 to 4560 kg ha-1, 2011/12). The apparent nitrogen recovery rate decreased with the increase in N applied doses.