993 resultados para Régnier, L.-P.
Resumo:
Chemical mass transfer was quantified in a metacarbonate xenolith enclosed within the granodiorite of the Qu,rigut massif (Pyrenees, France). Mass balance calculations suggest a strong decrease of CaO, SrO and CO(2) contents (up to -90%), correlated with a decrease of modal calcite content as the contact is approached. Most other chemical elements behave immobile during metasomatism. They are therefore passively enriched. Only a small increase of SiO(2), Al(2)O(3) and Fe(2)O(3) contents occurs in the immediate vicinity of the contact. Hence, in this study, skarn formation is characterized by the lack of large chemical element influx from the granitoid protolith. A large decrease of the initial carbonate volume (up to -86%) resulted from a combination of decarbonation reactions and loss of CaO and CO(2). The resulting volume change has potentially important consequences for the interpretation of stable isotope profiles: the isotope alteration could have occured over greater distances than those observed today.
Resumo:
Tissue protein hypercatabolism (TPH) is a most important feature in cancer cachexia, particularly with regard to the skeletal muscle. The rat ascites hepatoma Yoshida AH-130 is a very suitable model system for studying the mechanisms involved in the processes that lead to tissue depletion, since it induces in the host a rapid and progressive muscle waste mainly due to TPH (Tessitore, L., G. Bonelli, and F. M. Baccino. 1987. Biochem. J. 241:153-159). Detectable plasma levels of tumor necrosis factor-alpha associated with marked perturbations in the hormonal homeostasis have been shown to concur in forcing metabolism into a catabolic setting (Tessitore, L., P. Costelli, and F. M. Baccino. 1993. Br. J. Cancer. 67:15-23). The present study was directed to investigate if beta 2-adrenergic agonists, which are known to favor skeletal muscle hypertrophy, could effectively antagonize the enhanced muscle protein breakdown in this cancer cachexia model. One such agent, i.e., clenbuterol, indeed largely prevented skeletal muscle waste in AH-130-bearing rats by restoring protein degradative rates close to control values. This normalization of protein breakdown rates was achieved through a decrease of the hyperactivation of the ATP-ubiquitin-dependent proteolytic pathway, as previously demonstrated in our laboratory (Llovera, M., C. García-Martínez, N. Agell, M. Marzábal, F. J. López-Soriano, and J. M. Argilés. 1994. FEBS (Fed. Eur. Biochem. Soc.) Lett. 338:311-318). By contrast, the drug did not exert any measurable effect on various parenchymal organs, nor did it modify the plasma level of corticosterone and insulin, which were increased and decreased, respectively, in the tumor hosts. The present data give new insights into the mechanisms by which clenbuterol exerts its preventive effect on muscle protein waste and seem to warrant the implementation of experimental protocols involving the use of clenbuterol or alike drugs in the treatment of pathological states involving TPH, particularly in skeletal muscle and heart, such as in the present model of cancer cachexia.
Resumo:
OBJECTIVES: Elevated plasma levels of the elastase alpha 1-proteinase inhibitor complex (E-alpha 1 PI) have been proposed as a marker of bacterial infection and neutrophil activation. Liberation of elastase from neutrophils after collection of blood may cause falsely elevated results. Collection methods have not been validated for critically ill neonates and children. We evaluated the influence of preanalytical methods on E-alpha 1 PI results including the recommended collection into EDTA tubes. DESIGN AND METHODS: First, we compared varying acceleration speeds and centrifugation times. Centrifugation at 1550 g for 3 min resulted in reliable preparation of leukocyte free plasma. Second, we evaluated all collection tubes under consideration for absorption of E-alpha 1 PI. Finally, 12 sets of samples from healthy adults and 42 sets obtained from critically ill neonates and children were distributed into the various sampling tubes. Samples were centrifuged within 15 min of collection and analyzed with a new turbidimetric assay adapted to routine laboratory analyzers. RESULTS: One of the two tubes containing a plasma-cell separation gel absorbed 22.1% of the E-alpha 1 PI content. In the remaining tubes without absorption of E-alpha 1 PI no differences were observed for samples from healthy adult patients. However, in samples from critically ill neonates or children, significantly higher results were obtained for plain Li-heparin tubes (mean = 183 micrograms/L), EDTA tubes (mean = 93 micrograms/L), and citrate tubes (mean = 88.5 micrograms/L) than for the Li-hep tube with cell-plasma separation gel and no absorption of E-alpha 1 PI (mean = 62.4 micrograms/L, p < 0.01). CONCLUSION: Contrary to healthy adults, E-alpha 1 PI results in plasma samples from critically ill neonates and children depend on the type of collection tube.
Resumo:
Alveolar macrophages have the ability to downregulate immune processes in vitro. We have recently suggested the presence of interleukin-1 (IL-1) inhibitors in the supernatants of human bronchoalveolar lavage cells from patients with idiopathic pulmonary fibrosis or sarcoidosis. In the present study, we further analyze the cellular origin and the biologic properties of a 20- to 25-kD IL-1 inhibitor spontaneously produced by cultured human alveolar macrophages (AM). The inhibitor blocks IL-1-induced prostaglandin E2 production by human fibroblasts and the IL-1-related increase of phytohemagglutinin-induced murine thymocyte proliferation. After rigorous IL-1 alpha and IL-1 beta depletion, supernatants of lung macrophages specifically block the binding of IL-1 to its receptor on the murine thymoma cell line EL4-6.1 in a dose-dependent manner. These results indicate that AM from both normal donors and patients produce a specific IL-1 inhibitor that may be of importance in protecting the alveolar environment from the deleterious effects of excessive IL-1 production.
Resumo:
Recent publications have demonstrated that the protease caspase-1 is responsible for the processing of pro-interleukin 18 (IL-18) into the active form. Studies on cell lines and murine macrophages have shown that the bacterial invasion factor SipB activates caspase-1, triggering cell death. Thus, we investigated the role of SipB in the activation and release of IL-18 in human alveolar macrophages (AM), which are the first line of defense against inhaled pathogens. Under steady-state conditions, AM are a more important source of IL-18 than are dendritic cells (DC) and monocytes. Cytokine production by AM and DC was compared after both types of cells had been infected with a virulent strain of Salmonella enterica serovar Typhimurium and an isogenic sipB mutant, which were used as an infection model. Infection with virulent Salmonella led to marked cell death with features of apoptosis while both intracellular activation and release of IL-18 were demonstrated. In contrast, the sipB mutant did not induce such cell death or the release of active IL-18. The specific caspase-1 inhibitor Ac-YVAD-CMK blocked the early IL-18 release in AM infected with the virulent strain. However, the type of Salmonella infection did not differentially regulate IL-18 gene expression. We concluded that the bacterial virulence factor SipB plays an essential posttranslational role in the intracellular activation of IL-18 and the release of the cytokine in human AM.
Resumo:
In fluid dynamical models the freeze-out of particles across a three-dimensional space-time hypersurface is discussed. The calculation of final momentum distribution of emitted particles is described for freeze-out surfaces, with both spacelike and timelike normals, taking into account conservation laws across the freeze-out discontinuity.
Resumo:
We study the effects of strict conservation laws and the problem of negative contributions to final momentum distribution during the freeze-out through 3-dimensional hypersurfaces with spacelike normal. We study some suggested solutions for this problem, and demonstrate it in one example.
Resumo:
A model for energy, pressure, and flow velocity distributions at the beginning of ultrarelativistic heavy ion collisions is presented, which can be used as an initial condition for hydrodynamic calculations. Our model takes into account baryon recoil for both target and projectile, arising from the acceleration of partons in an effective field F mu nu produced in the collision. The typical field strength (string tension) for RHIC energies is about 512 GeV/fm, which allows us to talk about string ropes. The results show that a quark-gluon plasma forms a tilted disk, such that the direction of the largest pressure gradient stays in the reaction plane, but deviates from both the beam and the usual transverse flow directions. Such initial conditions may lead to the creation of antiflow or third flow component [L. P. Csernai and D. Rhrich, Phys. Rev. Lett. B 458, 454 (1999)].
Resumo:
The fast simultaneous hadronization and chemical freeze-out of supercooled quark-gluon plasma, created in relativistic heavy ion collisions, can lead to the reheating of the expanding matter and to the change in a collective flow profile. We use the assumption of statistical nature of the hadronization process, and study quantitatively the freeze-out in the framework of hydrodynamical Bjorken model with different simple quark-gluon plasma equations of state.
Resumo:
The problem of freeze-out (FO) in relativistic heavy-ion reactions is addressed. We develop and analyze an idealized one-dimensional model of FO in a finite layer, based on the covariant FO probability. The resulting post FO phase-space distributions are discussed for different FO probabilities and layer thicknesses.