940 resultados para Quantities
Resumo:
Les problèmes d'écoulements multiphasiques en média poreux sont d'un grand intérêt pour de nombreuses applications scientifiques et techniques ; comme la séquestration de C02, l'extraction de pétrole et la dépollution des aquifères. La complexité intrinsèque des systèmes multiphasiques et l'hétérogénéité des formations géologiques sur des échelles multiples représentent un challenge majeur pour comprendre et modéliser les déplacements immiscibles dans les milieux poreux. Les descriptions à l'échelle supérieure basées sur la généralisation de l'équation de Darcy sont largement utilisées, mais ces méthodes sont sujettes à limitations pour les écoulements présentant de l'hystérèse. Les avancées récentes en terme de performances computationnelles et le développement de méthodes précises pour caractériser l'espace interstitiel ainsi que la distribution des phases ont favorisé l'utilisation de modèles qui permettent une résolution fine à l'échelle du pore. Ces modèles offrent un aperçu des caractéristiques de l'écoulement qui ne peuvent pas être facilement observées en laboratoire et peuvent être utilisé pour expliquer la différence entre les processus physiques et les modèles à l'échelle macroscopique existants. L'objet premier de la thèse se porte sur la simulation numérique directe : les équations de Navier-Stokes sont résolues dans l'espace interstitiel et la méthode du volume de fluide (VOF) est employée pour suivre l'évolution de l'interface. Dans VOF, la distribution des phases est décrite par une fonction fluide pour l'ensemble du domaine et des conditions aux bords particulières permettent la prise en compte des propriétés de mouillage du milieu poreux. Dans la première partie de la thèse, nous simulons le drainage dans une cellule Hele-Shaw 2D avec des obstacles cylindriques. Nous montrons que l'approche proposée est applicable même pour des ratios de densité et de viscosité très importants et permet de modéliser la transition entre déplacement stable et digitation visqueuse. Nous intéressons ensuite à l'interprétation de la pression capillaire à l'échelle macroscopique. Nous montrons que les techniques basées sur la moyenne spatiale de la pression présentent plusieurs limitations et sont imprécises en présence d'effets visqueux et de piégeage. Au contraire, une définition basée sur l'énergie permet de séparer les contributions capillaires des effets visqueux. La seconde partie de la thèse est consacrée à l'investigation des effets d'inertie associés aux reconfigurations irréversibles du ménisque causé par l'interface des instabilités. Comme prototype pour ces phénomènes, nous étudions d'abord la dynamique d'un ménisque dans un pore angulaire. Nous montrons que, dans un réseau de pores cubiques, les sauts et reconfigurations sont si fréquents que les effets d'inertie mènent à différentes configurations des fluides. A cause de la non-linéarité du problème, la distribution des fluides influence le travail des forces de pression, qui, à son tour, provoque une chute de pression dans la loi de Darcy. Cela suggère que ces phénomènes devraient être pris en compte lorsque que l'on décrit l'écoulement multiphasique en média poreux à l'échelle macroscopique. La dernière partie de la thèse s'attache à démontrer la validité de notre approche par une comparaison avec des expériences en laboratoire : un drainage instable dans un milieu poreux quasi 2D (une cellule Hele-Shaw avec des obstacles cylindriques). Plusieurs simulations sont tournées sous différentes conditions aux bords et en utilisant différents modèles (modèle intégré 2D et modèle 3D) afin de comparer certaines quantités macroscopiques avec les observations au laboratoire correspondantes. Malgré le challenge de modéliser des déplacements instables, où, par définition, de petites perturbations peuvent grandir sans fin, notre approche numérique apporte de résultats satisfaisants pour tous les cas étudiés. - Problems involving multiphase flow in porous media are of great interest in many scientific and engineering applications including Carbon Capture and Storage, oil recovery and groundwater remediation. The intrinsic complexity of multiphase systems and the multi scale heterogeneity of geological formations represent the major challenges to understand and model immiscible displacement in porous media. Upscaled descriptions based on generalization of Darcy's law are widely used, but they are subject to several limitations for flow that exhibit hysteric and history- dependent behaviors. Recent advances in high performance computing and the development of accurate methods to characterize pore space and phase distribution have fostered the use of models that allow sub-pore resolution. These models provide an insight on flow characteristics that cannot be easily achieved by laboratory experiments and can be used to explain the gap between physical processes and existing macro-scale models. We focus on direct numerical simulations: we solve the Navier-Stokes equations for mass and momentum conservation in the pore space and employ the Volume Of Fluid (VOF) method to track the evolution of the interface. In the VOF the distribution of the phases is described by a fluid function (whole-domain formulation) and special boundary conditions account for the wetting properties of the porous medium. In the first part of this thesis we simulate drainage in a 2-D Hele-Shaw cell filled with cylindrical obstacles. We show that the proposed approach can handle very large density and viscosity ratios and it is able to model the transition from stable displacement to viscous fingering. We then focus on the interpretation of the macroscopic capillary pressure showing that pressure average techniques are subject to several limitations and they are not accurate in presence of viscous effects and trapping. On the contrary an energy-based definition allows separating viscous and capillary contributions. In the second part of the thesis we investigate inertia effects associated with abrupt and irreversible reconfigurations of the menisci caused by interface instabilities. As a prototype of these phenomena we first consider the dynamics of a meniscus in an angular pore. We show that in a network of cubic pores, jumps and reconfigurations are so frequent that inertia effects lead to different fluid configurations. Due to the non-linearity of the problem, the distribution of the fluids influences the work done by pressure forces, which is in turn related to the pressure drop in Darcy's law. This suggests that these phenomena should be taken into account when upscaling multiphase flow in porous media. The last part of the thesis is devoted to proving the accuracy of the numerical approach by validation with experiments of unstable primary drainage in a quasi-2D porous medium (i.e., Hele-Shaw cell filled with cylindrical obstacles). We perform simulations under different boundary conditions and using different models (2-D integrated and full 3-D) and we compare several macroscopic quantities with the corresponding experiment. Despite the intrinsic challenges of modeling unstable displacement, where by definition small perturbations can grow without bounds, the numerical method gives satisfactory results for all the cases studied.
Resumo:
White adipose tissue (WAT) produces lactate in significant amount from circulating glucose, especially in obesity;Under normoxia, 3T3L1 cells secrete large quantities of lactate to the medium, again at the expense of glucose and proportionally to its levels. Most of the glucose was converted to lactate with only part of it being used to synthesize fat. Cultured adipocytes were largely anaerobic, but this was not a Warburg-like process. It is speculated that the massive production of lactate, is a process of defense of the adipocyte, used to dispose of excess glucose. This way, the adipocyte exports glucose carbon (and reduces the problem of excess substrate availability) to the liver, but the process may be also a mechanism of short-term control of hyperglycemia. The in vivo data obtained from adipose tissue of male rats agree with this interpretation.
Resumo:
The objective of this work was to quantify the accumulation of the major seed storage protein subunits, β-conglycinin and glycinin, and how they influence yield and protein and oil contents in high-protein soybean genotypes. The relative accumulation of subunits was calculated by scanning SDS-PAGE gels using densitometry. The protein content of the tested genotypes was higher than control cultivar in the same maturity group. Several genotypes with improved protein content and with unchanged yield or oil content were developed as a result of new breeding initiatives. This research confirmed that high-protein cultivars accumulate higher amounts of glycinin and β-conglycinin. Genotypes KO5427, KO5428, and KO5429, which accumulated lower quantities of all subunits of glycinin and β-conglycinin, were the only exceptions. Attention should be given to genotypes KO5314 and KO5317, which accumulated significantly higher amounts of both subunits of glycinin, and to genotypes KO5425, KO5319, KO539 and KO536, which accumulated significantly higher amounts of β-conglycinin subunits. These findings suggest that some of the tested genotypes could be beneficial in different breeding programs aimed at the production of agronomically viable plants, yielding high-protein seed with specific composition of storage proteins for specific food applications.
Resumo:
Spatial data analysis mapping and visualization is of great importance in various fields: environment, pollution, natural hazards and risks, epidemiology, spatial econometrics, etc. A basic task of spatial mapping is to make predictions based on some empirical data (measurements). A number of state-of-the-art methods can be used for the task: deterministic interpolations, methods of geostatistics: the family of kriging estimators (Deutsch and Journel, 1997), machine learning algorithms such as artificial neural networks (ANN) of different architectures, hybrid ANN-geostatistics models (Kanevski and Maignan, 2004; Kanevski et al., 1996), etc. All the methods mentioned above can be used for solving the problem of spatial data mapping. Environmental empirical data are always contaminated/corrupted by noise, and often with noise of unknown nature. That's one of the reasons why deterministic models can be inconsistent, since they treat the measurements as values of some unknown function that should be interpolated. Kriging estimators treat the measurements as the realization of some spatial randomn process. To obtain the estimation with kriging one has to model the spatial structure of the data: spatial correlation function or (semi-)variogram. This task can be complicated if there is not sufficient number of measurements and variogram is sensitive to outliers and extremes. ANN is a powerful tool, but it also suffers from the number of reasons. of a special type ? multiplayer perceptrons ? are often used as a detrending tool in hybrid (ANN+geostatistics) models (Kanevski and Maignank, 2004). Therefore, development and adaptation of the method that would be nonlinear and robust to noise in measurements, would deal with the small empirical datasets and which has solid mathematical background is of great importance. The present paper deals with such model, based on Statistical Learning Theory (SLT) - Support Vector Regression. SLT is a general mathematical framework devoted to the problem of estimation of the dependencies from empirical data (Hastie et al, 2004; Vapnik, 1998). SLT models for classification - Support Vector Machines - have shown good results on different machine learning tasks. The results of SVM classification of spatial data are also promising (Kanevski et al, 2002). The properties of SVM for regression - Support Vector Regression (SVR) are less studied. First results of the application of SVR for spatial mapping of physical quantities were obtained by the authorsin for mapping of medium porosity (Kanevski et al, 1999), and for mapping of radioactively contaminated territories (Kanevski and Canu, 2000). The present paper is devoted to further understanding of the properties of SVR model for spatial data analysis and mapping. Detailed description of the SVR theory can be found in (Cristianini and Shawe-Taylor, 2000; Smola, 1996) and basic equations for the nonlinear modeling are given in section 2. Section 3 discusses the application of SVR for spatial data mapping on the real case study - soil pollution by Cs137 radionuclide. Section 4 discusses the properties of the modelapplied to noised data or data with outliers.
Resumo:
Objectives: To assess the difference in direct medical costs between on-demand (OD) treatment with esomeprazole (E) 20 mg and continuous (C) treatment with E 20 mg q.d. from a clinical practice view in patients with gastroesophageal reflux disease (GERD) symptoms. Methods: This open, randomized study (ONE: on-demand Nexium evaluation) compared two long-term management options with E 20 mg in endoscopically uninvestigated patients seeking primary care for GERD symptoms who demonstrated complete relief of symptoms after an initial treatment of 4 weeks with E 40 mg. Data on consumed quantities of all cost items were collected in the study, while data on prices during the time of study were collected separately. The analysis was done from a societal perspective. Results: Forty-nine percent (484 of 991) of patients randomized to the OD regimen and 46% (420 of 913) of the patients in the C group had at least one contact with the investigator that would have occurred nonprotocol-driven. The difference of the adjusted mean direct medical costs between the treatment groups was CHF 88.72 (95% confidence interval: CHF 41.34-153.95) in favor of the OD treatment strategy (Wilcoxon rank-sum test: P < 0.0001). Adjusted direct nonmedical costs and productivity loss were similar in both groups. Conclusions: The adjusted direct medical costs of a 6-month OD treatment with esomeprazole 20 mg in uninvestigated patients with symptoms of GERD were significantly lower compared with a continuous treatment with E 20 mg once a day. The OD therapy represents a cost-saving alternative to the continuous treatment strategy with E.
Resumo:
Fly ash, a by-product of coal-fired electricity generating plants, has for years been promoted as a material suitable for highway construction. Disposal of the large quantities of fly ash produced is expensive and creates environmental concerns. The pozzolanic properties make it promotable as a partial Portland cement replacement in pc concrete, a stabilizer for soil and aggregate in embankments and road bases, and a filler material in grout. Stabilizing soils and aggregates for road construction has the potential of using large quantities of fly ash. Iowa Highway Research Board Project HR-194, "Mission-Oriented Dust Control and Surface Improvement Processes for Unpaved Roads", included short test sections of cement, fly ash, and salvaged granular road material mixed for a base in western Iowa. The research showed that cement fly ash aggregate (CFA) has promise as a stabilizing agent in Iowa. There are several sources of sand that when mixed with fly ash may attain strengths much greater than fly ash mixed with salvaged granular road material at little additional cost
Resumo:
The objective of this work was to evaluate if corn plants damaged by the lesser cornstalk borer (Elasmopalpus lignosellus) larvae release volatile organic compounds capable of attracting the egg parasitoid Trichogramma pretiosum. The treatments consisted of plants subjected to harm caused by E. lignosellus larvae, plants subjected to mechanical damage, and undamaged plants. The parasitoid was more attracted by the volatiles released by the insect damaged plants than to those released by undamaged corn plants, after 24 and 72 hours. The volatiles (Z)-3-hexenyl acetate, β-pinene, β-myrcene, (E)-4,8-dimethylnona-1,3,7-triene, and benzothiazole were released in significantly larger quantities by damaged plants. Volatiles released by corn plants damaged by E. lignosellus larvae may act as an indirect defense, attracting by T. pretiosum.
Resumo:
C75 is a synthetic racemic α-methylene-γ-butyrolactone exhibiting anti-tumoral properties in vitro and in vivo as well as inducing hypophagia and weight loss in rodents. These interesting properties are thought to be a consequence of the inhibition of the key enzymes FAS and CPT1 involved in lipid metabolism. The need for larger amounts of this compound for biological evaluation prompted us to develop a convenient and reliable route to multigram quantities of C75 from easily available ethyl penta-3,4-dienoate 6. A recently described protocol for the addition of 6 to a mixture of dicyclohexylborane and nonanal followed by acidic treatment of the crude afforded lactone 8, as a mixture of cis and trans isomers, in good yield. The DBU-catalyzed isomerization of the methyl esters 9 arising from 8 gave a 10:1 trans/cis mixture from which the trans isomer was isolated and easily transformed into C75. The temporary transformation of C75 into a phenylseleno ether derivative makes its purification, manipulation and storage easier.
Resumo:
We present results from both, calorimetric and dilatometric studies of the isothermal ordering process taking place in a Cu-Zn-Al shape memory alloy after quenches from Tq temperatures ranging from 350 K to 1200 K. The dissipated energy and the length variations of the system are obtained during the process. The change of these quantities in the whole process have been compared with the difference [MATH] between Ms, measured after the relaxation and Ms measured just after the quench. We obtain that these three quantities present, as a function of Tq, the same qualitative behaviour. These changes are then associated with changes of the L21 ordering after the quench in the system. The relaxational process does not follow a single exponential decay. Instead, a continuous slowing down is observed. A relaxation time [MATH] has been defined to characterize the relaxation rate. We show that [MATH] depends on both the annealing and the quenching (Tq [MATH] 800 K) temperatures through an Arrhenius law.
Resumo:
The Iowa Department of Public Health (IDPH), Division of Environmental Health, Health Assessment Program gives people information about harmful chemicals and organisms in their environment. Blue-green algae are microscopic organisms that are naturally present in lakes and streams. Some blue-green algae produce toxins that could pose a health risk to people and animals when they are exposed to them in large enough quantities. This fact sheet answers questions about blue-green algae.
Resumo:
White adipose tissue (WAT) produces lactate in significant amount from circulating glucose, especially in obesity;Under normoxia, 3T3L1 cells secrete large quantities of lactate to the medium, again at the expense of glucose and proportionally to its levels. Most of the glucose was converted to lactate with only part of it being used to synthesize fat. Cultured adipocytes were largely anaerobic, but this was not a Warburg-like process. It is speculated that the massive production of lactate, is a process of defense of the adipocyte, used to dispose of excess glucose. This way, the adipocyte exports glucose carbon (and reduces the problem of excess substrate availability) to the liver, but the process may be also a mechanism of short-term control of hyperglycemia. The in vivo data obtained from adipose tissue of male rats agree with this interpretation.
Resumo:
Purpose: Concerns about self-reports have led to calls for objective measures of blood alcohol concentration (BAC). The present study compared objective measures with self-reports. Methods: BAC from breath or blood samples were obtained from 272 randomly sampled injured patients who were admitted to a Swiss emergency department (ED). Self-reports were compared a) between those providing and refusing a BAC test, and b) to estimated peak BAC (EPBAC) values based on BACs using the Widmark formula. Results: Those providing BACs were significantly (P < 0.05) younger, more often male, and less often reported alcohol consumption before injury, but consumed higher quantities when drinking. Eighty-eight percent of those with BAC measures gave consistent reports (positive or negative). Significantly more patients reported consumption with negative BAC measures (N = 29) than vice versa (N = 3). Duration of consumption and times between injury and BAC measurement predicted EPBAC better than did the objective BAC measure. Conclusions: There is little evidence that patients who provide objective BAC measures deliberately conceal consumption. ED studies must rely on self-reports, eg, take the time period between injury and ED admission into account. Clearly, objective measures are of clinical relevance, eg, to provide optimal treatment in the ED. However, they may be less relevant to establishing effects in an epidemiologic sense, such as estimating risk relationships. In this respect, efforts to increase the validity and reliability of self-reports should be preferred over the collection of additional objective measures.
Resumo:
The thermogenic response induced by glucose/insulin administered intravenously was examined in 22 healthy male volunteers using indirect calorimetry in combination with the euglycaemic insulin clamp technique. Five increasing steady state levels of insulinaemia (62 muU/ml to 1132 muU/ml) were achieved by means of continuous infusions of insulin at 5 rates ranging from 0.5 mU/kg.min to 10 mU/kg.min. Euglycaemia was maintained at each insulin level by infusing glucose at different rates ranging from steady state values of 0.41 g/min to 0.77 g/min. These glucose/insulin infusions resulted in a significant net rise in resting energy expenditure from 0.33 kJ/min to 0.94 kJ/min over preinfusion baseline values for the lowest and the highest doses respectively. There was a highly significant relationship (r = 0.93, p<0.001, n = 42) between the amount of glucose infused and the net increase in energy expenditure over preinfusion baseline values. Intravenous glucose induced thermogenesis (GIT(iv)) was calculated as incremental values of energy expenditure related to step changes in glucose infusion rates. GIT(iv) was found to be approximately 5.5% a physiological plasma insulin levels (i.e. below 200 muU/ml) whereas at supraphysiological levels (i.e.>400 muU/ml) GIT(iv) was increased up to 8%. It was concluded that: 1. the magnitude of the GIT(iv) at physiological insulinaemia was similar to that found by other investigators who have administered glucose per os; 2. the elevated thermogenesis observed at high doses of glucose/insulin infusion is consistent with recent clinical findings showing a markedly increased energy expenditure in patients supported by large quantities of intravenous glucose (TPN).
Resumo:
Relatively simple techniques are now available which allow the preparation of large quantities of highly reproducible aggregate cultures from fetal rat brain or liver cells, and to grow them in a chemically defined medium. Since these cultures exhibit extensive histotypic cellular reorganization and maturation, they offer unique possibilities for developmental studies. Therefore, the purpose of the present study was to investigate the usefulness of these cultures in developmental toxicology. Aggregating brain cell cultures were exposed at different developmental stages to model drugs (i.e., antimitotic, neurotoxic, and teratogenic agents) and assayed for their responsiveness by measuring a set of biochemical parameters (i.e., total protein and DNA content, cell type-specific enzyme activities) which permit a monitoring of cellular growth and maturation. It was found that each test compound elicited a distinct, dose-dependent response pattern, which may ultimately serve to screen and classify toxic drugs by using mechanistic criteria. In addition, it could be shown that aggregating liver cell cultures are capable of toxic drug activation, and that they can be used in co-culture with brain cell aggregates, providing a potential model for complementary toxicological and metabolic studies.
Resumo:
BACKGROUND: Neurospheres (NS) are colonies of neural stem and precursor cells capable of differentiating into the central nervous system (CNS) cell lineages upon appropriate culture conditions: neurons, and glial cells. NS were originally derived from the embryonic and adult mouse striatum subventricular zone. More recently, experimental evidence substantiated the isolation of NS from almost any region of the CNS, including the hypothalamus. METHODOLOGY/FINDINGS: Here we report a protocol that enables to generate large quantities of NS from both fetal and adult rat hypothalami. We found that either FGF-2 or EGF were capable of inducing NS formation from fetal hypothalamic cultures, but that only FGF-2 is effective in the adult cultures. The hypothalamic-derived NS are capable of differentiating into neurons and glial cells and most notably, as demonstrated by immunocytochemical detection with a specific anti-GnRH antibody, the fetal cultures contain cells that exhibit a GnRH phenotype upon differentiation. CONCLUSIONS/SIGNIFICANCE: This in vitro model should be useful to study the molecular mechanisms involved in GnRH neuronal differentiation.