930 resultados para Professional Life Cycle of the Teacher
Resumo:
A longitudinal bone survey was conducted in 86 female Wistar rats in order to assess mineral density kinetics from young age (5 weeks: 115 g) till late adulthood (64 weeks: 586 g). In vivo quantitative radiographic scanning was performed on the caudal vertebrae, taking trabecular mass as the parameter. Measurements were expressed as Relative Optical Density (ROD) units by means of a high resolution densitometric device. Results showed a progressive increase in mineral density throughout the life cycle, with a tendency to level in the higher weight range, indicating that progressive mineral aposition occurs in rats in dependency of age. This phenomenon, however, should be always considered within the context of continuous skeletal growth and related changes typical of this species. Twelve different animals were also examined following induction of articular inflammation with Freund's adjuvant in six of them. Bone survey conducted 12 to 18 days after inoculation revealed a significant (P less than 0.01) reduction in trabecular bone mass of scanned vertebrae in comparison with the weight-matched untreated controls. It is concluded that the in vivo quantitative assessment of bone density illustrated in this report represents a sensitive and useful tool for the long-term survey of naturally occurring or experimentally induced bone changes. Scanning of the same part of the skeleton can be repeated, thereby avoiding sacrifice of the animal and time-consuming preparation of post-mortem material.
Resumo:
This paper asks how takeover and failure hazards change as listed firms get older. The hypothesis is that they increase because firms gradually run out of growth opportunities. We find the opposite. Both takeover and failure hazard drop significantly with age. The decline in takeover hazard can be explained with Loderer, Stulz, and Waelchli’s (2013) “buggy whip makers” hypothesis: Because old firms are comparatively well-managed and are affected by limited agency problems, on average, they offer little value added potential to acquirers. Failure hazard drops because to learning. The results are robust to various alternative interpretations and cannot be explained by unobserved heterogeneity. While hazards decline with age, they do not go to zero. This explains why, eventually, all listed firms disappear
Resumo:
This paper asks how takeover and failure hazards change as listed firms get older. The hypothesis is that they increase because firms gradually run out of growth opportunities. We find the opposite. Both takeover and failure hazard drop significantly with age. The decline in takeover hazard can be explained with Loderer, Stulz, and Waelchli’s (2013) “buggy whip makers” hypothesis: Because old firms are comparatively well-managed and are affected by limited agency problems, on average, they offer little value added potential to acquirers. Failure hazard drops because to learning. The results are robust to various alternative interpretations and cannot be explained by unobserved heterogeneity. While hazards decline with age, they do not go to zero. This explains why, eventually, all listed firms disappear
Resumo:
This paper asks how takeover and failure hazards change as listed firms get older. The hypothesis is that they increase because firms gradually run out of growth opportunities. We find the opposite. Both takeover and failure hazard drop significantly with age. The decline in takeover hazard can be explained with Loderer, Stulz, and Waelchli’s (2013) “buggy whip makers” hypothesis: Because old firms are comparatively well-managed and are affected by limited agency problems, on average, they offer little value added potential to acquirers. Failure hazard drops because to learning. The results are robust to various alternative interpretations and cannot be explained by unobserved heterogeneity. While hazards decline with age, they do not go to zero. This explains why, eventually, all listed firms disappear
Resumo:
Our objective for this study was to evaluate the influence of preindustrial and expected future atmospheric CO2 concentrations (280 µatm and 700 µatm pCO2, respectively) on different life-cycle stages of the kelp Laminaria hyperborea from Helgoland (Germany, North Sea). Zoospore germination, gametogenesis, vegetative growth, sorus formation and photosynthetic performance of vegetative and fertile tissue were examined. The contribution of external carbonic anhydrase (exCA) to C-supply for net-photosynthesis (net-PS) and the Chla- and phlorotannin content were investigated. Female gametogenesis and vegetative growth of sporophytes were significantly enhanced under the expected future pCO2. rETR(max) and net-PS of young vegetative sporophytes tended to increase performance at higher pCO2. The trend towards elevated net-PS vanished after inhibition of exCA. In vegetative sporophytes, phlorotannin content and Chla content were not significantly affected by pCO2.
Resumo:
Ocean Acidification (OA) has been shown to affect photosynthesis and calcification in the coccolithophore Emiliania huxleyi, a cosmopolitan calcifier that significantly contributes to the regulation of the biological carbon pumps. Its non-calcifying, haploid life-cycle stage was found to be relatively unaffected by OA with respect to biomass production. Deeper insights into physiological key processes and their dependence on environmental factors are lacking, but are required to understand and possibly estimate the dynamics of carbon cycling in present and future oceans. Therefore, calcifying diploid and non-calcifying haploid cells were acclimated to present and future CO2 partial pressures (pCO2; 38.5 Pa vs. 101.3 Pa CO2) under low and high light (50 vs. 300 µmol photons/m**2 /s). Comparative microarray-based transcriptome profiling was used to screen for the underlying cellular processes and allowed to follow up interpretations derived from physiological data. In the diplont, the observed increases in biomass production under OA are likely caused by stimulated production of glycoconjugates and lipids. The observed lowered calcification under OA can be attributed to impaired signal-transduction and ion-transport. The haplont utilizes distinct genes and metabolic pathways, reflecting the stage-specific usage of certain portions of the genome. With respect to functionality and energy-dependence, however, the transcriptomic OA-responses resemble those of the diplont. In both life-cycle stages, OA affects the cellular redox-state as a master regulator and thereby causes a metabolic shift from oxidative towards reductive pathways, which involves a reconstellation of carbon flux networks within and across compartments. Whereas signal transduction and ion-homeostasis appear equally OA-sensitive under both light intensities, the effects on carbon metabolism and light physiology are clearly modulated by light availability. These interactive effects can be attributed to the influence of OA and light on the redox equilibria of NAD and NADP, which function as major sensors for energization and stress. This generic mode of action of OA may therefore provoke similar cell-physiological responses in other protists.
Resumo:
This paper introduces a new emerging software component, the idea management system, which helps to gather, organise, select and manage the innovative ideas provided by the communities gathered around organisations or enterprises. We define the notion of the idea life cycle, which provides a framework for characterising tools and techniques that drive the evolution of community submitted data inside idea management systems. Furthermore, we show the dependencies between the community-created information and the enterprise processes that are a result of using idea management systems and point out the possible benefits.
Resumo:
Análisis de ciclo de vida de una nueva solución arquitectónica que mejora el rendimiento térmico de la envolvente del edificio: fachada natural aljibe.
Resumo:
This paper examined the potentialities of Life Cycle Assessment (LCA) as instrument for policy-support. To this respect, the adoption of an initiative within the Madrid Air Quality Plan (AQP) 2011–2015 regarding the substitution of diesel taxis with hybrid, natural gas and LPG alternatives was studied. Four different scenarios were elaborated, a business-as-usual scenario (BAU), the scenario of the AQP, and two extreme-situation scenarios: all-diesel (ADI) and all-ecologic (AEC). Impacts were characterized according to the ILCD methodology, focusing especially on climate change (CC) and photochemical ozone formation (PO). SimaPro 7.3 was used as analysis and inventory-construction tool. The results indicate that the shift to ecologic alternatives reduced impacts, especially those related to CC and PO. For the complete life cycle, reductions of 13% (CC) and 25% (PO) were observed for AQP against BAU (CC:1365 GgCO2, PO:13336 MgNMVOC). Deeper reductions were observed for AEC (CC:34%, PO:59%), while ADI produced slight increases in impacts if against BAU. The analysis of the use-phase revealed that the central and highest speed zones of the city benefit from the adoption of AQP. This is especially evident in zone 7, with reductions of 16% in CC and 31% in PO respectively against BAU (CCzone1:3443 kgCO2/veh·km, POzone7:11.1 kgNMVOC/veh·km).
Resumo:
Purpose Concentrating Solar Power (CSP) plants based on parabolic troughs utilize auxiliary fuels (usually natural gas) to facilitate start-up operations, avoid freezing of HTF and increase power output. This practice has a significant effect on the environmental performance of the technology. The aim of this paper is to quantify the sustainability of CSP and to analyse how this is affected by hybridisation with different natural gas (NG) inputs. Methods A complete Life Cycle (LC) inventory was gathered for a commercial wet-cooled 50 MWe CSP plant based on parabolic troughs. A sensitivity analysis was conducted to evaluate the environmental performance of the plant operating with different NG inputs (between 0 and 35% of gross electricity generation). ReCiPe Europe (H) was used as LCA methodology. CML 2 baseline 2000 World and ReCiPe Europe E were used for comparative purposes. Cumulative Energy Demands (CED) and Energy Payback Times (EPT) were also determined for each scenario. Results and discussion Operation of CSP using solar energy only produced the following environmental profile: climate change 26.6 kg CO2 eq/KWh, human toxicity 13.1 kg 1,4-DB eq/KWh, marine ecotoxicity 276 g 1,4-DB eq/KWh, natural land transformation 0.005 m2/KWh, eutrophication 10.1 g P eq/KWh, acidification 166 g SO2 eq/KWh. Most of these impacts are associated with extraction of raw materials and manufacturing of plant components. The utilization NG transformed the environmental profile of the technology, placing increasing weight on impacts related to its operation and maintenance. Significantly higher impacts were observed on categories like climate change (311 kg CO2 eq/MWh when using 35 % NG), natural land transformation, terrestrial acidification and fossil depletion. Despite its fossil nature, the use of NG had a beneficial effect on other impact categories (human and marine toxicity, freshwater eutrophication and natural land transformation) due to the higher electricity output achieved. The overall environmental performance of CSP significantly deteriorated with the use of NG (single score 3.52 pt in solar only operation compared to 36.1 pt when using 35 % NG). Other sustainability parameters like EPT and CED also increased substantially as a result of higher NG inputs. Quasilinear second-degree polynomial relationships were calculated between various environmental performance parameters and NG contributions. Conclusions Energy input from auxiliary NG determines the environmental profile of the CSP plant. Aggregated analysis shows a deleterious effect on the overall environmental performance of the technology as a result of NG utilization. This is due primarily to higher impacts on environmental categories like climate change, natural land transformation, fossil fuel depletion and terrestrial acidification. NG may be used in a more sustainable and cost-effective manner in combined cycle power plants, which achieve higher energy conversion efficiencies.
Resumo:
The construction industry produces great environmental impacts to the planet. In order to tackle this problem, the European Union has put into effect Regulation No 305/2011, which compels the construction products manufacturers to carry out environmental performance studies of these products and thus make public the impact they cause on the environment. The aim of this research is to make known the environmental impacts of the SOS Natura Conventional Façade (CF) solution, obtained within the research project "SOS Natura, Vegetal Architectural Solutions" developed by the Department of Construction and Technology in Architecture of the School of Architecture of the Technical University of Madrid (Spain). In addition, we report an environmental comparative with the Natural Water Tank Façade (NWTF), studied previously by the same work group and included in the same research project.We present as well an uncertainty analysis for both façades. Following the study conducted we conclude that the NWTF profile has a slightly better environmental behaviour when compared to the CF profile for the entire life cycle in most of the impact categories analysed in this study. However it should also be noted that, in detail and at stage level, the NWTF presents a higher environmental impact than the CF.