838 resultados para Product Ecosystems
Resumo:
We have examined the gut bacterial metabolism of pomegranate by-product (POMx) and major pomegranate polyphenols, punicalagins, using pH-controlled, stirred, batch culture fermentation systems reflective of the distal region of the human large intestine. Incubation of POMx or punicalagins with faecal bacteria resulted in formation of the dibenzopyranone-type urolithins. The time course profile confirmed the tetrahydroxylated urolithin D as the first product of microbial transformation, followed by compounds with decreasing number of phenolic hydroxy groups: the trihydroxy analogue urolithin C and dihydroxylated urolithin A. POMx exposure enhanced the growth of total bacteria, Bifidobacterium spp. and Lactobacillus spp., without influencing the Clostridium coccoides–Eubacterium rectale group and the C. histolyticum group. In addition, POMx increased concentrations of short chain fatty acids (SCFA) viz. acetate, propionate and butyrate in the fermentation medium. Punicalagins did not affect the growth of bacteria or production of SCFA. The results suggest that POMx oligomers, composed of gallic acid, ellagic acid and glucose units, may account for the enhanced growth of probiotic bacteria.
Resumo:
New high technology products usher in novel possibilities to transform the design, production and use of buildings. The high technology companies which design, develop and introduce these new products by generating and applying novel scientific and technical knowledge are faced with significant market uncertainty, technological uncertainty and competitive volatility. These characteristics present unique innovation challenges compared to low- and medium technology companies. This paper reports on an ongoing Construction Knowledge Exchange funded project which is tracking, real time, the new product development process of a new family of light emitting diode (LEDs) technologies. LEDs offer significant functional and environmental performance improvements over incumbent tungsten and halogen lamps. Hitherto, the use of energy efficient, low maintenance LEDs has been constrained by technical limitations. Rapid improvements in basic science and technology mean that for the first time LEDs can provide realistic general and accent lighting solutions. Interim results will be presented on the complex, emergent new high technology product development processes which are being revealed by the integrated supply chain of a LED module manufacture, a luminaire (light fitting) manufacture and end user involved in the project.
Resumo:
The sensory, instrumental, and chemical profile of a smoked tuna product comparable and competitive to smoked turkey and pork was studied, based on four experimental factors. Despite their different brining times, all brined, sliced portions of tuna were assessed by panelists as quite acceptable products in terms of firmness, juiciness, color, and saltiness. Protein denaturation seemed to be affected by the brining time. Lipid oxidation seemed quite extensive; the ratio of C22:6n-3/C16:0 was decreased at 15% and 20%. Histamine content was between 3.7 mg/ 100 g and 7.5 mg/100 g. After 3 mo in refrigeration, the aerobic bacteria was 19.10^5 to 250.10^6 in contrast to the unprocessed samples at 28.10^5.
Children playing branded video games: The impact of interactivity on product placement effectiveness
Resumo:
This study extends product placement research by testing the impact of interactivity on product placement effectiveness. The results suggest that when children cannot interact with the placements in video games, perceptual fluency is the underlying mechanism leading to positive affect. Therefore, the effects are only evident in a stimulus-based choice where the same stimulus is provided as a cue. However, when children have the opportunity to interact with the placements in video games, they may be influenced by conceptual fluency. Thus, placements are still effective in a memory-based choice where no stimulus is provided as a cue. Keywords: Perceptual fluency; Conceptual fluency; Video games; Interactivity; Children; Product placement
Resumo:
Executive summary Nature of the problem (science/management/policy) • Freshwater ecosystems play a key role in the European nitrogen (N) cycle, both as a reactive agent that transfers, stores and processes N loadings from the atmosphere and terrestrial ecosystems, and as a natural environment severely impacted by the increase of these loadings. Approaches • This chapter is a review of major processes and factors controlling N transport and transformations for running waters, standing waters, groundwaters and riparian wetlands. Key findings/state of knowledge • The major factor controlling N processes in freshwater ecosystems is the residence time of water, which varies widely both in space and in time, and which is sensitive to changes in climate, land use and management. • The effects of increased N loadings to European freshwaters include acidification in semi-natural environments, and eutrophication in more disturbed ecosystems, with associated loss of biodiversity in both cases. • An important part of the nitrogen transferred by surface waters is in the form of organic N, as dissolved organic N (DON) and particulate organic N (PON). This part is dominant in semi-natural catchments throughout Europe and remains a significant component of the total N load even in nitrate enriched rivers. • In eutrophicated standing freshwaters N can be a factor limiting or co-limiting biological production, and control of both N and phosphorus (P) loading is oft en needed in impacted areas, if ecological quality is to be restored. Major uncertainties/challenges • The importance of storage and denitrifi cation in aquifers is a major uncertainty in the global N cycle, and controls in part the response of catchments to land use or management changes. In some aquifers, the increase of N concentrations will continue for decades even if efficient mitigation measures are implemented now. • Nitrate retention by riparian wetlands has oft en been highlighted. However, their use for mitigation must be treated with caution, since their effectiveness is difficult to predict, and side effects include increased DON emissions to adjacent open waters, N2O emissions to the atmosphere, and loss of biodiversity. • In fact, the character and specific spatial origins of DON are not fully understood, and similarly the quantitative importance of indirect N2O emissions from freshwater ecosystems as a result of N leaching losses from agricultural soils is still poorly known at the regional scale. • These major uncertainties remain due to the lack of adequate monitoring (all forms of N at a relevant frequency), especially – but not only – in the southern and eastern EU countries. Recommendations (research/policy) • The great variability of transfer pathways, buffering capacity and sensitivity of the catchments and of the freshwater ecosystems calls for site specific mitigation measures rather than standard ones applied at regional to national scale. • The spatial and temporal variations of the N forms, the processes controlling the transport and transformation of N within freshwaters, require further investigation if the role of N in influencing freshwater ecosystem health is to be better understood, underpinning the implementation of the EU Water Framework Directive for European freshwaters.
Resumo:
Classical risk assessment approaches for animal diseases are influenced by the probability of release, exposure and consequences of a hazard affecting a livestock population. Once a pathogen enters into domestic livestock, potential risks of exposure and infection both to animals and people extend through a chain of economic activities related to producing, buying and selling of animals and products. Therefore, in order to understand economic drivers of animal diseases in different ecosystems and to come up with effective and efficient measures to manage disease risks from a country or region, the entire value chain and related markets for animal and product needs to be analysed to come out with practical and cost effective risk management options agreed by actors and players on those value chains. Value chain analysis enriches disease risk assessment providing a framework for interdisciplinary collaboration, which seems to be in increasing demand for problems concerning infectious livestock diseases. The best way to achieve this is to ensure that veterinary epidemiologists and social scientists work together throughout the process at all levels.
Resumo:
The ozone-ethene reaction has been investigated at low pressure in a flow-tube interfaced to a u.v. photoelectron spectrometer. Photoelectron spectra recorded as a function of reaction time have been used to estimate partial pressures of the reagents and products, using photoionization cross-sections for selected photoelectron bands of the reagents and products, which have been measured separately. Product yields compare favourably with results of other studies, and the production of oxygen and acetaldehyde have been measured as a function of time for the first time. A reaction scheme developed for the ozone-ethene reaction has been used to simulate the reagents and products as a function of time. The results obtained are in good agreement with the experimental measurements. For each of the observed products, the simulations allow the main reaction (or reactions) for production of that product to be established. The product yields have been used in a global model to estimate their global annual emissions in the atmosphere. Of particular interest are the calculated global annual emissions of formaldehyde (0.96 ± 0.10 Tg) and formic acid, (0.05 ± 0.01 Tg) which are estimated as 0.04% and 0.7% of the total annual emission respectively.
Resumo:
A proof using the methane tetrahedroid bond angle can be obtained by using spherical polar coordinates to calculate the Cartesian coordinates of the hydrogen atoms, then using the dot product of vectors.