974 resultados para Process mean
Resumo:
This paper presents techniques which can lead to diagnosis of faults in a small size multi-cylinder diesel engine. Preliminary analysis of the acoustic emission (AE) signals is outline, including time-frequency analysis and selection of optimum frequency band.The results of applying mean field independent component analysis (MFICA) to separate the AE root mean square (RMS) signals and the effects of changing parameter values are also outlined. The results on separation of RMS signals show thsi technique has the potential of increasing the probability to successfully identify the AE events associated with the various mechanical events within the combustion process of multi-cylinder diesel engines.
Resumo:
Transcending traditional national borders, the Internet is an evolving technology that has opened up many new international market opportunities. However, ambiguity remains, with limited research and understanding of how the Internet influences the firm’s internationalisation process components. As a consequence, there has been a call for further investigation of the phenomenon. Thus, the purpose of this study was to investigate the Internet’s impact on the internationalisation process components, specifically, information availability, information usage, interactive communication and international market growth. Analysis was undertaken using structural equation modelling. Findings highlight the mediating impact of the Internet on information and knowledge transference in the internationalisation process. Contributions of the study test conceptualisations and give statistical validation of interrelationships, while illuminating the Internet’s impact on firm internationalisation.
Resumo:
Accurate reliability prediction for large-scale, long lived engineering is a crucial foundation for effective asset risk management and optimal maintenance decision making. However, a lack of failure data for assets that fail infrequently, and changing operational conditions over long periods of time, make accurate reliability prediction for such assets very challenging. To address this issue, we present a Bayesian-Marko best approach to reliability prediction using prior knowledge and condition monitoring data. In this approach, the Bayesian theory is used to incorporate prior information about failure probabilities and current information about asset health to make statistical inferences, while Markov chains are used to update and predict the health of assets based on condition monitoring data. The prior information can be supplied by domain experts, extracted from previous comparable cases or derived from basic engineering principles. Our approach differs from existing hybrid Bayesian models which are normally used to update the parameter estimation of a given distribution such as the Weibull-Bayesian distribution or the transition probabilities of a Markov chain. Instead, our new approach can be used to update predictions of failure probabilities when failure data are sparse or nonexistent, as is often the case for large-scale long-lived engineering assets.
Resumo:
Accurate and detailed road models play an important role in a number of geospatial applications, such as infrastructure planning, traffic monitoring, and driver assistance systems. In this thesis, an integrated approach for the automatic extraction of precise road features from high resolution aerial images and LiDAR point clouds is presented. A framework of road information modeling has been proposed, for rural and urban scenarios respectively, and an integrated system has been developed to deal with road feature extraction using image and LiDAR analysis. For road extraction in rural regions, a hierarchical image analysis is first performed to maximize the exploitation of road characteristics in different resolutions. The rough locations and directions of roads are provided by the road centerlines detected in low resolution images, both of which can be further employed to facilitate the road information generation in high resolution images. The histogram thresholding method is then chosen to classify road details in high resolution images, where color space transformation is used for data preparation. After the road surface detection, anisotropic Gaussian and Gabor filters are employed to enhance road pavement markings while constraining other ground objects, such as vegetation and houses. Afterwards, pavement markings are obtained from the filtered image using the Otsu's clustering method. The final road model is generated by superimposing the lane markings on the road surfaces, where the digital terrain model (DTM) produced by LiDAR data can also be combined to obtain the 3D road model. As the extraction of roads in urban areas is greatly affected by buildings, shadows, vehicles, and parking lots, we combine high resolution aerial images and dense LiDAR data to fully exploit the precise spectral and horizontal spatial resolution of aerial images and the accurate vertical information provided by airborne LiDAR. Objectoriented image analysis methods are employed to process the feature classiffcation and road detection in aerial images. In this process, we first utilize an adaptive mean shift (MS) segmentation algorithm to segment the original images into meaningful object-oriented clusters. Then the support vector machine (SVM) algorithm is further applied on the MS segmented image to extract road objects. Road surface detected in LiDAR intensity images is taken as a mask to remove the effects of shadows and trees. In addition, normalized DSM (nDSM) obtained from LiDAR is employed to filter out other above-ground objects, such as buildings and vehicles. The proposed road extraction approaches are tested using rural and urban datasets respectively. The rural road extraction method is performed using pan-sharpened aerial images of the Bruce Highway, Gympie, Queensland. The road extraction algorithm for urban regions is tested using the datasets of Bundaberg, which combine aerial imagery and LiDAR data. Quantitative evaluation of the extracted road information for both datasets has been carried out. The experiments and the evaluation results using Gympie datasets show that more than 96% of the road surfaces and over 90% of the lane markings are accurately reconstructed, and the false alarm rates for road surfaces and lane markings are below 3% and 2% respectively. For the urban test sites of Bundaberg, more than 93% of the road surface is correctly reconstructed, and the mis-detection rate is below 10%.
Resumo:
The deterioration of air quality is a significant issue in large and growing cities. This work investigates particulate emissions from transport, the largest source of air pollution in cities today. Emitters such as busy roads and diesel trains are investigated, with specific reference to the evolution of particles over time and distance. Diesel trains are investigated as an alternative to road traffic in investigating evolutionary processes. Higher emissions and solitary sources mean that the emitted plume can be observed over time in a single location. These results represent the first investigation of the evolution of fine and ultrafine aerosol particles from this type of source. Aerosols near a busy road are investigated, with the result that a dependence of total number concentration on distance from the road is shown to be related to the fragmentation of nanoparticle clusters. Local meteorological conditions are also monitored and humidity is shown to vary with distance from the road in a nonmonotonic way. Particles from a busy road were also examined using a scanning electron microscope, with the intention of understanding the make up of the emitted aerosol plume. It was determined that due to significant surface behaviour post-deposition, this method of analysis could not directly classify airborne pollutants. Some interesting results were obtained however, particularly in terms of composite particles and the analysis of deposited patterns. This thesis introduces new work in terms of the analysis of diesel train particulate emissions, as well as adding further evidence towards the fragmentation process of aerosol evolution in both background concentrations and emitted aerosol plumes.
Resumo:
As organizations reach higher levels of business process management maturity, they often find themselves maintaining very large process model repositories, representing valuable knowledge about their operations. A common practice within these repositories is to create new process models, or extend existing ones, by copying and merging fragments from other models. We contend that if these duplicate fragments, a.k.a. ex- act clones, can be identified and factored out as shared subprocesses, the repository’s maintainability can be greatly improved. With this purpose in mind, we propose an indexing structure to support fast detection of clones in process model repositories. Moreover, we show how this index can be used to efficiently query a process model repository for fragments. This index, called RPSDAG, is based on a novel combination of a method for process model decomposition (namely the Refined Process Structure Tree), with established graph canonization and string matching techniques. We evaluated the RPSDAG with large process model repositories from industrial practice. The experiments show that a significant number of non-trivial clones can be efficiently found in such repositories, and that fragment queries can be handled efficiently.
Resumo:
Evidence exists that repositories of business process models used in industrial practice contain significant amounts of duplication. This duplication may stem from the fact that the repository describes variants of the same pro- cesses and/or because of copy/pasting activity throughout the lifetime of the repository. Previous work has put forward techniques for identifying duplicate fragments (clones) that can be refactored into shared subprocesses. However, these techniques are limited to finding exact clones. This paper analyzes the prob- lem of approximate clone detection and puts forward two techniques for detecting clusters of approximate clones. Experiments show that the proposed techniques are able to accurately retrieve clusters of approximate clones that originate from copy/pasting followed by independent modifications to the copied fragments.
Resumo:
In order to make good decisions about the design of information systems, an essential skill is to understand process models of the business domain the system is intended to support. Yet, little knowledge to date has been established about the factors that affect how model users comprehend the content of process models. In this study, we use theories of semiotics and cognitive load to theorize how model and personal factors influence how model viewers comprehend the syntactical information of process models. We then report on a four-part series of experiments, in which we examined these factors. Our results show that additional semantical information impedes syntax comprehension, and that theoretical knowledge eases syntax comprehension. Modeling experience further contributes positively to comprehension efficiency, measured as the ratio of correct answers to the time taken to provide answers. We discuss implications for practice and research.
Resumo:
The central thesis in the article is that the venture creation process is different for innovative versus imitative ventures. This holds up; the pace of the process differs by type of venture as do, in line with theory-based hypotheses, the effects of certain human capital (HC) and social capital (SC) predictors. Importantly, and somewhat unexpectedly, the theoretically derived models using HC, SC, and certain controls are relatively successful explaining progress in the creation process for the minority of innovative ventures, but achieve very limited success for the imitative majority. This may be due to a rationalistic bias in conventional theorizing and suggests that there is need for considerable theoretical development regarding the important phenomenon of new venture creation processes. Another important result is that the building up of instrumental social capital, which we assess comprehensively and as a time variant construct, is important for making progress with both types of ventures, and increasingly, so as the process progresses. This result corroborates with stronger operationalization and more appropriate analysis method what previously published research has only been able to hint at.
Resumo:
By 2020 Australia‟s National Digital Economy Strategy aims to increase household online participation and engage 12 per cent of all employees in teleworking arrangements. Achieving these goals is generally perceived as positive due to the reduced impact on the natural environment from less use of transport. However, this also will enable greater flexibility as to where people live and thus will impact upon the maintenance and formation of communities and on property use. This paper commences by clarifying what is Australia‟s internet economy before highlighting the impact of the internet on community formation and maintenance. The paper concludes by identifying what the achievement of these goals will mean for property use in the future.
Resumo:
With the large diffusion of Business Process Managemen (BPM) automation suites, the possibility of managing process-related risks arises. This paper introduces an innovative framework for process-related risk management and describes a working implementation realized by extending the YAWL system. The framework covers three aspects of risk management: risk monitoring, risk prevention, and risk mitigation. Risk monitoring functionality is provided using a sensor-based architecture, where sensors are defined at design time and used at run-time for monitoring purposes. Risk prevention functionality is provided in the form of suggestions about what should be executed, by who, and how, through the use of decision trees. Finally, risk mitigation functionality is provided as a sequence of remedial actions (e.g. reallocating, skipping, rolling back of a work item) that should be executed to restore the process to a normal situation.
Resumo:
Objectives To assess the effects of information interventions which orient patients and their carers/family to a cancer care facility and the services available within the facility. Design Systematic review of randomised controlled trials (RCTs), cluster RCTs and quasi-RCTs. Data sources MEDLINE, CINAHL, PsycINFO, EMBASE and the Cochrane Central Register of Controlled Trials. Methods We included studies evaluating the effect of an orientation intervention, compared with a control group which received usual care, or with trials comparing one orientation intervention with another orientation intervention. Results Four RCTs of 610 participants met the criteria for inclusion. Findings from two RCTs demonstrated significant benefits of the orientation intervention in relation to reduced levels of distress (mean difference (MD): −8.96, 95% confidence interval (95%CI): −11.79 to −6.13), but non-significant benefits in relation to the levels state anxiety levels (MD −9.77) (95%CI: −24.96 to 5.41). There are insufficient data on the other outcomes of interest. Conclusions This review has demonstrated the feasibility and some potential benefits of orientation interventions. There was a low level of evidence to suggest that orientation interventions can reduce distress in patients. However, other outcomes, including patient knowledge recall/satisfaction, remain inconclusive. The majority of trials were subjected to high risk of bias and were likely to be insufficiently powered. Further well conducted and powered RCTs are required to provide evidence for determining the most appropriate intensity, nature, mode and resources for such interventions. Patient and carer-focused outcomes should be included.
Resumo:
Due to proliferation of online stores prior expectations that retailing would move completely online were not fulfilled. Previous research about consumers’ preference of retailing channels suggested that online sales are driven by the convenience of online shopping, or as a natural extension of online searches. This paradigm has changed over the years. Changes in consumer behaviour are indicating that while consumers are searching online using various information sources to learn about products, ultimately when purchasing, consumers are shifting between online and offline retailing channels depending on various factors. Online shopping is still considered to be a convenient way to purchase goods, but the convenience is not the key factor. This qualitative research is based on 22 in-depth interviews with shoppers in Australia.
Resumo:
Public participate in the planning and design of major public infrastructure and construction (PIC) projects is crucial to their success, as the interests of different stakeholders can be systematically captured and built into the finalised scheme. However, public participation may not always yield a mutually acceptable solution, especially when the interests of stakeholders are diverse and conflicting. Confrontations and disputes can arise unless the concerns or needs of the community are carefully analysed and addressed. The aim of the paper is to propose a systematic method of analysing stakeholder concerns relating to PIC projects by examining the degree of consensus and/or conflict involved. The results of a questionnaire survey and a series of interviews with different entities are provided, which indicate the existence of a significant divergence of views among stakeholder groups and that conflicts arise when there is a mismatch between peoples’ perception concerning money and happiness on the one hand and development and damages on the other. Policy and decision-makers should strive to resolve at least the majority of conflicts that arise throughout the lifecycle of major PIC projects so as to maximise their chance of success.
Resumo:
Customer relationship marketing (CRM) initiatives are increasingly being adopted by businesses in the attempt to enhance brand loyalty and stimulate repeat purchases. The purpose of this study was to examine the extent to which destination marketing organisations (DMOs) around the world have developed a visitor relationship marketing (VRM) orientation. The proposition underpinning the study is that maintaining meaningful dialogue with previous visitors in some markets would represent a more efficient use of resources than above the line advertising to attract new visitors. Importance-performance analysis was utilised to measure destination marketers’ perceptions of the efficacy of CRM initiatives, and then rate their own organisation’s performance across the same range of initiatives. A key finding was that mean importance was higher than perceived performance for every item. While the small sample limits generalisability, in general there are appears to be a lack of strategic intent by DMOs to invest in VRM.