951 resultados para Principal component analysis (PCA)
Resumo:
Themarine environment seems, at first sight, to be a homogeneousmediumlacking barriers to species dispersal. Nevertheless, populations of marine species show varying levels of gene flow and population differentiation, so barriers to gene flow can often be detected. Weaimto elucidate the role of oceanographical factors ingenerating connectivity among populations shaping the phylogeographical patterns in the marine realm, which is not only a topic of considerable interest for understanding the evolution ofmarine biodiversity but also formanagement and conservation of marine life. For this proposal,we investigate the genetic structure and connectivity between continental and insular populations ofwhite seabreamin North East Atlantic (NEA) and Mediterranean Sea (MS) aswell as the influence of historical and contemporary factors in this scenario using mitochondrial (cytochrome b) and nuclear (a set of 9 microsatellite) molecular markers. Azores population appeared genetically differentiated in a single cluster using Structure analysis. This result was corroborated by Principal Component Analysis (PCA) and Monmonier algorithm which suggested a boundary to gene flow, isolating this locality. Azorean population also shows the highest significant values of FST and genetic distances for both molecular markers (microsatellites and mtDNA). We suggest that the breakdown of effective genetic exchange between Azores and the others' samples could be explained simultaneously by hydrographic (deep water) and hydrodynamic (isolating current regimes) factors acting as barriers to the free dispersal of white seabream(adults and larvae) and by historical factors which could be favoured for the survival of Azorean white seabream population at the last glaciation. Mediterranean islands show similar genetic diversity to the neighbouring continental samples and nonsignificant genetic differences. Proximity to continental coasts and the current system could promote an optimal larval dispersion among Mediterranean islands (Mallorca and Castellamare) and coasts with high gene flow.
Resumo:
This study aimed to identify physiological markers in superficially scalded 'Rocha' pear (Pyrus communis L 'Rocha') that would relate to chlorophyll a fluorescence (CF), allowing a non-invasive diagnosis of the disorder. Conditions chosen before shelf life provided two fruit groups with different developing patterns and severity of superficial scald: T fruit fully developed the disorder in storage, while C fruit developed it progressively throughout shelf life. Principal component analysis (PCA) of all the measured variables, and simple linear correlations among several major parameters and scald index (SI)/shelf life showed that scald and ripening/aging were concurring processes, and that it was not possible to isolate a particular variable that could deliver a direct non-invasive diagnosis of the disorder. For both fruit groups the SI resulted from the balance between the reducing power (OD200) and the content of conjugated trienols (CTos) and alpha-farnesene (alpha-Farn) in the fruit peel. At OD200 > 150 there was a linear relationship between CTos and OD200, suggesting that the level of antioxidants was self-adjusted in order to compensate the CTos level. However, at OD200 < 150 this relationship disappeared. A consistent linear relationship between dos and alpha-Farn existed throughout shelf life in both fruit groups, contrarily to the early storage stage, when those compounds do not relate linearly. The CF variables F-0, F-v/F-m, and the colorimetric variables, L* and h degrees were used in multi-linear regressions with other physiological variables. The regressions were made on one of the fruit groups and validated through the other. Reliable regressions to alpha-Farn and CTos were obtained (R approximate to 0.6; rmsec approximate to rmsep). Our results suggest that a model based on CF and colorimetric parameters could be used to diagnose non-invasively both the contents and the relationship between alpha-Farn and CTos and hence the stage of scald development. (C) 2011 Elsevier By. All rights reserved.
Resumo:
Untreated effluents that reach surface water affect the aquatic life and humans. This study aimed to evaluate the wastewater s toxicity (municipal, industrial and shrimp pond effluents) released in the Estuarine Complex of Jundiaí- Potengi, Natal/RN, through chronic quantitative e qualitative toxicity tests using the test organism Mysidopsis Juniae, CRUSTACEA, MYSIDACEA (Silva, 1979). For this, a new methodology for viewing chronic effects on organisms of M. juniae was used (only renewal), based on another existing methodology to another testorganism very similar to M. Juniae, the M. Bahia (daily renewal).Toxicity tests 7 days duration were used for detecting effects on the survival and fecundity in M. juniae. Lethal Concentration 50% (LC50%) was determined by the Trimmed Spearman-Karber; Inhibition Concentration 50% (IC50%) in fecundity was determined by Linear Interpolation. ANOVA (One Way) tests (p = 0.05) were used to determinate the No Observed Effect Concentration (NOEC) and Low Observed Effect Concentration (LOEC). Effluents flows were measured and the toxic load of the effluents was estimated. Multivariate analysis - Principal Component Analysis (PCA) and Correspondence Analysis (CA) - identified the physic-chemical parameters better explain the patterns of toxicity found in survival and fecundity of M. juniae. We verified the feasibility of applying the only renewal system in chronic tests with M. Juniae. Most efluentes proved toxic on the survival and fecundity of M. Juniae, except for some shrimp pond effluents. The most toxic effluent was ETE Lagoa Aerada (LC50, 6.24%; IC50, 4.82%), ETE Quintas (LC50, 5.85%), Giselda Trigueiro Hospital (LC50, 2.05%), CLAN (LC50, 2.14%) and COTEMINAS (LC50, IC50 and 38.51%, 6.94%). The greatest toxic load was originated from ETE inefficient high flow effluents, textile effluents and CLAN. The organic load was related to the toxic effects of wastewater and hospital effluents in survival of M. Juniae, as well as heavy metals, total residual chlorine and phenols. In industrial effluents was found relationship between toxicity and organic load, phenols, oils and greases and benzene. The effects on fertility were related, in turn, with chlorine and heavy metals. Toxicity tests using other organisms of different trophic levels, as well as analysis of sediment toxicity are recommended to confirm the patterns found with M. Juniae. However, the results indicate the necessity for implementation and improvement of sewage treatment systems affluent to the Potengi s estuary
Resumo:
Ecomorphology is a science based on the idea that morphological differences among species could be associated with distinct biological and environmental pressures suffered by them. These differences can be studied employing morphological and biometric indexes denominated Ecomorphological attributes , representing standards that express characteristics of the individual in relation to its environment, and can be interpreted as indicators of life habits or adaptations suffered due its occupation of different habitats. This work aims to contribute for the knowledge of the ecomorphology of the Brazilian marine ichthyofauna, specifically from Galinhos, located at Rio Grande do Norte state. 10 different species of fish were studied, belonging the families Gerreidae (Eucinostomus argenteus), Haemulidae (Orthopristis ruber,Pomadasyscorvinaeformis,Haemulonaurolineatum,Haemulonplumieri,Haemulonsteindachneri), Lutjanidae (Lutjanus synagris), Paralichthyidae (Syaciummicrurum), Bothidae (Bothus ocellatus) and Tetraodontidae (Sphoeroidestestudineus), which were obtained during five collections, in the period time of September/2004 to April/2005, utilizing three special nets. The ecomorphological study was performed at the laboratory. Eight to ten samples of each fish specie were measured. Fifteen morphological aspects were considered to calculate twelve ecomorphological attributes. Multivariate statistical analysis methods such as Principal Component Analysis (PCA) and Cluster Analysis were done to identify ecmorphological patterns to describe the data set obtained. As results, H.aurolineatumwas the most abundant specie found (23,03%) and S.testudineusthe less one with 0,23%. The 1st Principal component showed variation of 60,03% with influence of the ecomorphological attribute related to body morphology, while the 2nd PC with 23,25% variation had influence of the ecomorphological attribute related to oral morphology. The Cluster Analiysis promoted the identification of three distinct groups Perciformes, Pleuronectiformes and Tetraodontiformes. Based on the obtained data, considering morphological characters differences among the species studied, we suggest that all of them live at the medium (E.argenteus,O.rubber, P.corvinaeformis,H.aurolineatum,H.plumieri,H.steindachneri,L.synagris) and bottom (S.micrurum,B.ocellatus,S.testudineus) region of column water.
Resumo:
Summary The objective of this study was to develop a methodology capable of modeling the effect of viticultural climate on wine sensory characteristics. The climate was defined by the Géoviticulture Multicriteria Climatic Classification System (Tonietto and Carbonneau, 2004), based on the Heliothermal index (HI), Cool Night index (CI) and Dryness index (DI). The sensory wine description was made according with the methodology established by Zanus and Tonietto (2007). In this study we focused on the 5 principal wine producing regions of Brazil: Serra Gaúcha, Serra do Sudeste, Campanha (Meridional and Central), Planalto Catarinense and Vale do Submédio São Francisco. The results from Principal Component Analysis (PCA) show the HI and CI opposed to the DI. High HI values were associated to a lower perception of acidity, as well as to a lower perception of concentration (palate) and persistence by mouth. For the red wines, high HI values were positively associated with alcohol (palate), conversely to the DI index, which showed high values related to the perception of tanins and acidity. The higher the CI, the lower were the color intensity, tanins, concentration and persistence by mouth. It may be concluded that viticultural climate - expressed by the HI, CI and DI indexes ? adequately explained much of the sensory differences of the wines made in different regions. The methodology proposed and the enlargement of the database it will maybe open the possibility of modeling the part of wine sensory characteristics as dependent variables of the viticultural climate, as defined by the Géoviticulture MCC System. Keywords: viticultural climate, modeling, wine, tipicity.
Resumo:
The production and commercialization of Brazilian grape juice is increasing annually, mainly due to its typicality, quality, and nutritional value. The present research was carried out in view of the great significance of Brazilian grape juice for the grape and wine industry. The purpose of this study, therefore, was to assess its composition as well as the discrimination between grape juice and other beverages. Twenty four samples of whole, sweetened, and reprocessed grape juices, grape nectar, and grape beverage were evaluated. Classical variables were analyzed by means of physicochemical methods; tartaric and malic acids, by HPLC; methanol, by gas chromatography; minerals, by atomic absorption spectrophotometry. These products were discriminated by the Principal Component Analysis (PCA). Results show that whole and sweetened grape juices were discriminated from other grape products because they featured higher values of total soluble solids, tartaric and malic acids, most minerals, phenolic compounds, and K/Na ratio, whereas grape nectar and grape beverage presented higher values of ºBrix/titratable acidity ratio. Reprocessed juice was discriminated due to its higher concentrations of Li and Na and lower hue.
Resumo:
Espécies forrageiras adaptadas às condições semiáridas são uma alternativa para reduzir os impactos negativos na cadeia produtiva de ruminantes da região Nordeste brasileira devido à sazonalidade na oferta de forragem, além de reduzir custo com o fornecimento de alimentos concentrados. Dentre as espécies, a vagem de algaroba (Prosopis juliflora SW D.C.) e palma forrageira (Opuntia e Nopalea) ganham destaque por tolerarem o déficit hídrico e produzirem em períodos onde a oferta de forragem está reduzida, além de apresentam bom valor nutricional e serem bem aceitas pelos animais. Porém, devido à variação na sua composição, seu uso na alimentação animal exige o conhecimento profundo da sua composição para a elaboração de dietas balanceadas. No entanto, devido ao custo e tempo para análise, os produtores não fazem uso da prática de análise da composição químico-bromatológica dos alimentos. Por isto, a espectroscopia de reflectância no infravermelho próximo (NIRS) representa uma importante alternativa aos métodos tradicionais. Objetivou-se com este estudo desenvolver e validar modelos de predição da composição bromatológica de vagem de algaroba e palma forrageira baseados em espectroscopia NIRS, escaneadas em dois modelos de equipamentos e com diferentes processamentos da amostra. Foram coletadas amostras de vagem de algaroba nos estados do Ceará, Bahia, Paraíba e Pernambuco, e amostras de palma forrageira nos estados do Ceará, Paraíba e Pernambuco, frescas (in natura) ou pré-secas e moídas. Para obtenção dos espectros utilizaram-se dois equipamentos NIR, Perten DA 7250 e FOSS 5000. Inicialmente os alimentos foram escaneados in natura em aparelho do modelo Perten, e, com o auxílio do software The Unscrambler 10.2 foi selecionado um grupo de amostras para o banco de calibração. As amostras selecionadas foram secas e moídas, e escaneadas novamente em equipamentos Perten e FOSS. Os valores dos parâmetros de referência foram obtidos por meio de metodologias tradicionalmente aplicadas em laboratório de nutrição animal para matéria seca (MS), matéria mineral (MM), matéria orgânica (MO), proteína bruta (PB), estrato etéreo (EE), fibra solúvel em detergente neutro (FDN), fibra solúvel em detergente ácido (FDA), hemicelulose (HEM) e digestibilidade in vitro da matéria seca (DIVMS). O desempenho dos modelos foi avaliado de acordo com os erros médios de calibração (RMSEC) e validação (RMSECV), coeficiente de determinação (R2 ) e da relação de desempenho de desvio dos modelos (RPD). A análise exploratória dos dados, por meio de tratamentos espectrais e análise de componentes principais (PCA), demonstraram que os bancos de dados eram similares entre si, dando segurança de desenvolver os modelos com todas as amostras selecionadas em um único modelo para cada alimento, algaroba e palma. Na avaliação dos resultados de referência, observou-se que a variação dos resultados para cada parâmetro corroboraram com os descritos na literatura. No desempenho dos modelos, aqueles desenvolvidos com pré-processamento da amostra (pré-secagem e moagem) se mostraram mais robustos do que aqueles construídos com amostras in natura. O aparelho NIRS Perten apresentou desempenho semelhante ao equipamento FOSS, apesar desse último cobrir uma faixa espectral maior e com intervalos de leituras menores. A técnica NIR, associada ao método de calibração multivariada de regressão por meio de quadrados mínimos (PLS), mostrou-se confiável para prever a composição químico-bromatológica de vagem de algaroba e da palma forrageira. Abstract: Forage species adapted to semi-arid conditions are an alternative to reduce the negative impacts in the feed supply for ruminants in the Brazilian Northeast region, due to seasonality in forage availability, as well as in the reducing of cost by providing concentrated feedstuffs. Among the species, mesquite pods (Prosopis juliflora SW DC) and spineless cactus (Opuntia and Nopalea) are highlighted for tolerating the drought and producion in periods where the forage is scarce, and have high nutritional value and also are well accepted by the animals. However, its use in animal diets requires a knowledge about its composition to prepare balanced diets. However, farmers usually do not use feed composition analysis, because their high cost and time-consuming. Thus, the Near Infrared Reflectance Spectroscopy in the (NIRS) is an important alternative to traditional methods. The objective of this study to develop and validate predictive models of the chemical composition of mesquite pods and spineless cactus-based NIRS spectroscopy, scanned in two different spectrometers and sample processing. Mesquite pods samples were collected in the states of Ceará, Bahia, Paraiba and Pernambuco, and samples of forage cactus in the states of Ceará, Paraíba and Pernambuco. In order to obtain the spectra, it was used two NIR equipment: Perten DA 7250 and FOSS 5000. sSpectra of samples were initially obtained fresh (as received) using Perten instrument, and with The Unscrambler software 10.2, a group of subsamples was selected to model development, keeping out redundant ones. The selected samples were dried and ground, and scanned again in both Perten and FOSS instruments. The values of the reference analysis were obtained by methods traditionally applied in animal nutrition laboratory to dry matter (DM), mineral matter (MM), organic matter (OM), crude protein (CP), ether extract (EE), soluble neutral detergent fiber (NDF), soluble acid detergent fiber (ADF), hemicellulose ( HEM) and in vitro digestibility of dry matter (DIVDM). The performance of the models was evaluated according to the Root Mean Square Error of Calibration (RMSEC) and cross-validation (RMSECV), coefficient of determination (R2 ) and the deviation of Ratio of performance Deviation of the models (RPD). Exploratory data analysis through spectral treatments and principal component analysis (PCA), showed that the databases were similar to each other, and may be treated asa single model for each feed - mesquite pods and cactus. Evaluating the reference results, it was observed that the variation were similar to those reported in the literature. Comparing the preprocessing of samples, the performance ofthose developed with preprocessing (dried and ground) of the sample were more robust than those built with fresh samples. The NIRS Perten device performance similar to FOSS equipment, although the latter cover a larger spectral range and with lower readings intervals. NIR technology associate do multivariate techniques is reliable to predict the bromatological composition of mesquite pods and cactus.
Resumo:
Colourants are substances used to change the colour of something, and are classified in three typology of colorants: a) pigments, b) dyes, and c) lakes and hybrid pigments. Their identification is very important when studying cultural heritage; it gives information about the artistic technique, can help in dating, and offers insights on the condition of the object. Besides, the study of the degradation phenomena constitutes a framework for the preventive conservation strategies, provides evidence of the object's original appearance, and contributes to the authentication of works of art. However, the complexity of these systems makes it impossible to achieve a complete understanding using a single technique, making necessary a multi-analytical approach. This work focuses on the set-up and application of advanced spectroscopic methods for the study of colourants in cultural heritage. The first chapter presents the identification of modern synthetic organic pigments using Metal Underlayer-ATR (MU-ATR), and the characterization of synthetic dyes extracted from wool fibres using a combination of Thin Layer Chromatography (TLC) coupled to MU-ATR using AgI@Au plates. The second chapter presents the study of the effect of metallic Ag in the photo-oxidation process of orpiment, and the influence of the different factors, such as light and relative humidity. We used a combination of vibrational and synchrotron radiation-based X-ray microspectroscopy techniques: µ-ATR-FT-IR, µ-Raman, SR-µ-XRF, µ-XANES at S K-, Ag L3- and As K-edges and SR-µ-XRD. The third chapter presents the study of metal carboxylates in paintings, specifically on the formation of Zn and Pb carboxylates in three different binders: stand linseed oil, whole egg, and beeswax. We used micro-ATR-FT-IR, macro FT-IR in total reflection (rMA-FT-IR), portable Near-Infrared spectroscopy (NIR), macro X-ray Powder Diffraction (MA-XRPD), XRPD, and Gas Chromatography Mass-Spectrometry (GC-MS). For the data processing, we explored the data from rMA-FT-IR and NIR with the Principal Component Analysis (PCA).
Resumo:
The surface of the Earth is subjected to vertical deformations caused by geophysical and geological processes which can be monitored by Global Positioning System (GPS) observations. The purpose of this work is to investigate GPS height time series to identify interannual signals affecting the Earth’s surface over the European and Mediterranean area, during the period 2001-2019. Thirty-six homogeneously distributed GPS stations were selected from the online dataset made available by the Nevada Geodetic Laboratory (NGL) on the basis of the length and quality of the data series. The Principal Component Analysis (PCA) is the technique applied to extract the main patterns of the space and time variability of the GPS Up coordinate. The time series were studied by means of a frequency analysis using a periodogram and the real-valued Morlet wavelet. The periodogram is used to identify the dominant frequencies and the spectral density of the investigated signals; the second one is applied to identify the signals in the time domain and the relevant periodicities. This study has identified, over European and Mediterranean area, the presence of interannual non-linear signals with a period of 2-to-4 years, possibly related to atmospheric and hydrological loading displacements and to climate phenomena, such as El Niño Southern Oscillation (ENSO). A clear signal with a period of about six years is present in the vertical component of the GPS time series, likely explainable by the gravitational coupling between the Earth’s mantle and the inner core. Moreover, signals with a period in the order of 8-9 years, might be explained by mantle-inner core gravity coupling and the cycle of the lunar perigee, and a signal of 18.6 years, likely associated to lunar nodal cycle, were identified through the wavelet spectrum. However, these last two signals need further confirmation because the present length of the GPS time series is still too short when compared to the periods involved.
Resumo:
The research project is focused on the investigation of the polymorphism of crystalline molecular material for organic semiconductor applications under non-ambient conditions, and the solid-state characterization and crystal structure determination of the different polymorphic forms. In particular, this research project has tackled the investigation and characterization of the polymorphism of perylene diimides (PDIs) derivatives at high temperatures and pressures, in particular N,N’-dialkyl-3,4,9,10-perylendiimide (PDI-Cn, with n = 5, 6, 7, 8). These molecules are characterized by excellent chemical, thermal, and photostability, high electron affinity, strong absorption in the visible region, low LUMO energies, good air stability, and good charge transport properties, which can be tuned via functionalization; these features make them promising n-type organic semiconductor materials for several applications such as OFETs, OPV cells, laser dye, sensors, bioimaging, etc. The thermal characterization of PDI-Cn was carried out by a combination of differential scanning calorimetry, variable temperature X-ray diffraction, hot-stage microscopy, and in the case of PDI-C5 also variable temperature Raman spectroscopy. Whereas crystal structure determination was carried out by both Single Crystal and Powder X-ray diffraction. Moreover, high-pressure polymorphism via pressure-dependent UV-Vis absorption spectroscopy and high-pressure Single Crystal X-ray diffraction was carried out in this project. A data-driven approach based on a combination of self-organizing maps (SOM) and principal component analysis (PCA) is also reported was used to classify different π-stacking arrangements of PDI derivatives into families of similar crystal packing. Besides the main project, in the framework of structure-property analysis under non-ambient conditions, the structural investigation of the water loss in Pt- and Pd- based vapochromic potassium/lithium salts upon temperature, and the investigation of structure-mechanical property relationships in polymorphs of a thienopyrrolyldione endcapped oligothiophene (C4-NT3N) are reported.
Resumo:
This work, in collaboration with the Romagna Reclamation Consortium, has the aim of studying the heavy metals concentration distribution in the drainage canals of the Ravenna coastal basins, Italy. Particular attention was given to the area of the V Fosso Ghiaia and VI Bevanella basins, where water and sediment samples were collected in the field and integrated with existing databases. The hydrological regime is controlled and managed by the Consortium, which has divided the territory into several mechanical drainage basins. XRF was performed on 21 sediment samples and pH, EC, T°, Fe2+ and Fetot were measured on 15 water samples by probes and spectrophotometer, respectively. Heavy metals concentrations exceeding legal limits of the D.LGS n ° 152/2006 were found for As, Co, Cr, Pb and Zn. These results were then integrated with canal sediment analyses provided by the Consortium to perform a Principal Component Analysis. PCA results show that the main variable affecting heavy metals distribution is the use of fertilizers, followed by distance from sea, and altimetry, which are directly linked to salinity. Heavy metals concentrations increase with increasing use of fertilizers, which are mainly due to the widespread agricultural practices and industrial land use in the area. High heavy metals concentrations are also found in the canals interested by higher salinity (especially Pinetale Ramazzotti). In fact, the area is affected by salinization caused by a water table below sea level and upward seepage of salty oxygen-poor saline water from the bottom of the aquifer. According to the literature, iron and manganese oxides were found to be an important factor in controlling the heavy metals distribution.
Resumo:
In questo elaborato vengono analizzate differenti tecniche per la detection di jammer attivi e costanti in una comunicazione satellitare in uplink. Osservando un numero limitato di campioni ricevuti si vuole identificare la presenza di un jammer. A tal fine sono stati implementati i seguenti classificatori binari: support vector machine (SVM), multilayer perceptron (MLP), spectrum guarding e autoencoder. Questi algoritmi di apprendimento automatico dipendono dalle features che ricevono in ingresso, per questo motivo è stata posta particolare attenzione alla loro scelta. A tal fine, sono state confrontate le accuratezze ottenute dai detector addestrati utilizzando differenti tipologie di informazione come: i segnali grezzi nel tempo, le statistical features, le trasformate wavelet e lo spettro ciclico. I pattern prodotti dall’estrazione di queste features dai segnali satellitari possono avere dimensioni elevate, quindi, prima della detection, vengono utilizzati i seguenti algoritmi per la riduzione della dimensionalità: principal component analysis (PCA) e linear discriminant analysis (LDA). Lo scopo di tale processo non è quello di eliminare le features meno rilevanti, ma combinarle in modo da preservare al massimo l’informazione, evitando problemi di overfitting e underfitting. Le simulazioni numeriche effettuate hanno evidenziato come lo spettro ciclico sia in grado di fornire le features migliori per la detection producendo però pattern di dimensioni elevate, per questo motivo è stato necessario l’utilizzo di algoritmi di riduzione della dimensionalità. In particolare, l'algoritmo PCA è stato in grado di estrarre delle informazioni migliori rispetto a LDA, le cui accuratezze risentivano troppo del tipo di jammer utilizzato nella fase di addestramento. Infine, l’algoritmo che ha fornito le prestazioni migliori è stato il Multilayer Perceptron che ha richiesto tempi di addestramento contenuti e dei valori di accuratezza elevati.
Resumo:
The component structure of a 34-item scale measuring different aspects of job satisfaction was investigated among extension officers in North West Province, South Africa. A simple random sampling technique was used to select 40 extension officers from which data were collected. A structured questionnaire consisting of 34 job satisfaction and 10 personal characteristic items was administered to the extension officers. Items on job satisfaction were measured at interval level and analyzedwith Principal ComponentAnalysis. Most of the respondents (82.5%) weremales, between 40 to 45 years, 85% were married and 87.5% had a diploma as their educational qualification. Furthermore, 54% of the households size between 4 to 6 persons, whereas 75% were Christians. The majority of the extension officers lived in their job area (82.5), while 80% covered at least 3 communities and 3 farmer groups. In terms of number of farmers covered, only 40% of the extension officers covered more than 500 farmers and 45% travelled more than 40 km to reach their farmers. From the job satisfaction items 9 components were extracted to show areas for job satisfaction among extension officers. These were in-service training, research policies, communicating recommended practices, financial support for self and family, quality of technical help, opportunity to advance education, management and control of operations, rewarding system and sanctions. The results have several implications for motivating extension officers for high job performance especially with large number of clients and small number of extension agents.
Resumo:
Prices of U.S. Treasury securities vary over time and across maturities. When the market in Treasurys is sufficiently complete and frictionless, these prices may be modeled by a function time and maturity. A cross-section of this function for time held fixed is called the yield curve; the aggregate of these sections is the evolution of the yield curve. This dissertation studies aspects of this evolution. ^ There are two complementary approaches to the study of yield curve evolution here. The first is principal components analysis; the second is wavelet analysis. In both approaches both the time and maturity variables are discretized. In principal components analysis the vectors of yield curve shifts are viewed as observations of a multivariate normal distribution. The resulting covariance matrix is diagonalized; the resulting eigenvalues and eigenvectors (the principal components) are used to draw inferences about the yield curve evolution. ^ In wavelet analysis, the vectors of shifts are resolved into hierarchies of localized fundamental shifts (wavelets) that leave specified global properties invariant (average change and duration change). The hierarchies relate to the degree of localization with movements restricted to a single maturity at the base and general movements at the apex. Second generation wavelet techniques allow better adaptation of the model to economic observables. Statistically, the wavelet approach is inherently nonparametric while the wavelets themselves are better adapted to describing a complete market. ^ Principal components analysis provides information on the dimension of the yield curve process. While there is no clear demarkation between operative factors and noise, the top six principal components pick up 99% of total interest rate variation 95% of the time. An economically justified basis of this process is hard to find; for example a simple linear model will not suffice for the first principal component and the shape of this component is nonstationary. ^ Wavelet analysis works more directly with yield curve observations than principal components analysis. In fact the complete process from bond data to multiresolution is presented, including the dedicated Perl programs and the details of the portfolio metrics and specially adapted wavelet construction. The result is more robust statistics which provide balance to the more fragile principal components analysis. ^
Resumo:
Objectives: The aim of this work was to verify the differentiation between normal and pathological human carotid artery tissues by using fluorescence and reflectance spectroscopy in the 400- to 700-nm range and the spectral characterization by means of principal components analysis. Background Data: Atherosclerosis is the most common and serious pathology of the cardiovascular system. Principal components represent the main spectral characteristics that occur within the spectral data and could be used for tissue classification. Materials and Methods: Sixty postmortem carotid artery fragments (26 non-atherosclerotic and 34 atherosclerotic with non-calcified plaques) were studied. The excitation radiation consisted of a 488-nm argon laser. Two 600-mu m core optical fibers were used, one for excitation and one to collect the fluorescence radiation from the samples. The reflectance system was composed of a halogen lamp coupled to an excitation fiber positioned in one of the ports of an integrating sphere that delivered 5 mW to the sample. The photo-reflectance signal was coupled to a 1/4-m spectrograph via an optical fiber. Euclidean distance was then used to classify each principal component score into one of two classes, normal and atherosclerotic tissue, for both fluorescence and reflectance. Results: The principal components analysis allowed classification of the samples with 81% sensitivity and 88% specificity for fluorescence, and 81% sensitivity and 91% specificity for reflectance. Conclusions: Our results showed that principal components analysis could be applied to differentiate between normal and atherosclerotic tissue with high sensitivity and specificity.