890 resultados para Pre-Mesozoic basement of Iberia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sediments from near the basement of a number of Deep Sea Drilling Project (DSDP) sites, from the Bauer Deep, and from the East Pacific Rise have unusually high transition metal-to-aluminum ratios. Similarities in the chemical, isotopic, and mineralogical compositions of these deposits point to a common origin. All the sediments studied have rare-earth-element (REE) patterns strongly resembling the pattern of sea water, implying either that the REE's were coprecipitated with ferromanganese hydroxyoxides (hydroxyoxides denote a mixture of unspecified hydrated oxides and hydroxides), or that they are incorporated in small concentrations of phosphatic fish debris found in all samples. Oxygen isotopic data indicate that the metalliferous sediments are in isotopic equilibrium with sea water and are composed of varying mixtures of two end-member phases with different oxygen isotopic compositions: an iron-manganese hydroxyoxide and an iron-rich montmorillonite. A low-temperature origin for the sediments is supported by mineralogical analyses by x-ray diffraction which show that goethite, iron-rich montmorillonite, and various manganese hydroxyoxides are the dominant phases present. Sr87/Sr86 ratios for the DSDP sediments are indistinguishable from the Sr87/Sr86 ratio in modern sea water. Since these sediments were formed 30 to 90 m.y. ago, when sea water had a lower Sr87/Sr86 value, the strontium in the poorly crystalline hydroxyoxides must be exchanging with interstitial water in open contact with sea water. In contrast, uranium isotopic data indicate that the metalliferous sediments have formed a closed system for this element. The sulfur isotopic compositions suggest that sea-water sulfur dominates these sediments with little or no contribution of magmatic or bacteriologically reduced sulfur. In contrast, ratios of lead isotopes in the metalliferous deposits resemble values for oceanic tholeiite basalt, but are quite different from ratios found in authigenic marine manganese nodules. Thus, lead in the metalliferous sediments appears to be of magmatic origin. The combined mineralogical, isotopic, and chemical data for these sediments suggest that they formed from hydrothermal solutions generated by the interaction of sea water with newly formed basalt crust at mid-ocean ridges. The crystallization of solid phases took place at low temperatures and was strongly influenced by sea water, which was the source for some of the elements found in the sediments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the southern Duero Basin of central Spain, there are vast areas of aeolian sand sheets and dune fields. A comprehensive survey of the sand quarries in this area identified a number of palaeosols in sedimentary sequences. The identification and AMS radiocarbon dating of soil charcoal fragments collected in these palaeosols indicate the persistence of Pinus pinaster in this area throughout most of the Holocene. Although potential natural vegetation models have usually considered the Pinus pinaster forests in this inland area of artificial origin, soil charcoal analysis provides firm evidence of a natural origin. Our data fit perfectly with the pattern of Holocene vegetation development for inland areas of Iberia, which are characterised by stability of pine forests throughout the Holocene. Finally, the growing body of palaeobotanical evidence from Iberia (macrofossils and pollen) is contributing to improve our knowledge of P. pinaster ecology, showing that this species has been present in most Iberian regions during the Holocene, where it has inhabited areas characterised by a very diverse set of climatic and soil conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Palaeoecological evidence indicates that highland pines were dominant in extensive areas of the mountains of Central and Northern Iberia during the first half of the Holocene. However, following several millennia of anthropogenic pressure, their natural ranges are now severely reduced. Although pines have been frequently viewed as first-stage successional species responding positively to human disturbance, some recent palaeobotanical work has proposed fire disturbance and human deforestation as the main drivers of this vegetation turnover. To assess the strength of the evidence for this hypothesis and to identify other possible explanations for this scenario, we review the available information on past vegetation change in the mountains of northern inland Iberia. We have chosen data from several sites that offer good chronological control, including palynological records with microscopic charcoal data and sites with plant macro- and megafossil occurrence. We conclude that although the available long-term data are still fragmentary and that new methods are needed for a better understanding of the ecological history of Iberia, fire events and human activities (probably modulated by climate) have triggered the pine demise at different locations and different temporal scales. In addition, all palaeoxylological, palynological and charcoal results obtained so far are fully compatible with a rapid human-induced ecological change that could have caused a range contraction of highland pines in western Iberia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular hydrogen strongly interacts with vicinal Ge(100) surfaces during preparation in a metal organic vapor phase epitaxy reactor. According to X-ray photoemission spectroscopy and Fourier-transform infrared spectroscopy results, we identify two characteristic reflection anisotropy (RA) spectra for H-free and monohydride-terminated vicinal Ge(100) surfaces. RAS allows in situ monitoring of the surface termination and enables spectroscopic hydrogen kinetic desorption studies on the Ge(100) surface. Comparison of evaluated values for the activation energy and the pre-exponential factor of H desorption evaluated at different photon energies reflects that H unevenly affects the shape of the RA spectrum.