948 resultados para Potential cycling technique
Resumo:
Aim This paper is a report of a study conducted to validate an instrument for measuring advanced practice nursing role delineation in an international contemporary health service context using the Delphi technique. Background Although most countries now have clear definitions and competency standards for nurse practitioners, no such clarity exists for many advanced practice nurse roles, leaving healthcare providers uncertain whether their service needs can or should be met by an advanced practice nurse or a nurse practitioner. The validation of a tool depicting advanced practice nursing is essential for the appropriate deployment of advanced practice nurses. This paper is the second in a three-phase study to develop an operational framework for assigning advanced practice nursing roles. Method An expert panel was established to review the activities in the Strong Model of Advanced Practice Role Delineation tool. Using the Delphi technique, data were collected via an on-line survey through a series of iterative rounds in 2008. Feedback and statistical summaries of responses were distributed to the panel until the 75% consensus cut-off was obtained. Results After three rounds and modification of five activities, consensus was obtained for validation of the content of this tool. Conclusion The Strong Model of Advanced Practice Role Delineation tool is valid for depicting the dimensions of practice of the advanced practice role in an international contemporary health service context thereby having the potential to optimize the utilization of the advanced practice nursing workforce.
Resumo:
With the increase in the level of global warming, renewable energy based distributed generators (DGs) will increasingly play a dominant role in electricity production. Distributed generation based on solar energy (photovoltaic and solar thermal), wind, biomass, mini-hydro along with use of fuel cells and micro turbines will gain considerable momentum in the near future. A microgrid consists of clusters of load and distributed generators that operate as a single controllable system. The interconnection of the DG to the utility/grid through power electronic converters has raised concern about safe operation and protection of the equipments. Many innovative control techniques have been used for enhancing the stability of microgrid as for proper load sharing. The most common method is the use of droop characteristics for decentralized load sharing. Parallel converters have been controlled to deliver desired real power (and reactive power) to the system. Local signals are used as feedback to control converters, since in a real system, the distance between the converters may make the inter-communication impractical. The real and reactive power sharing can be achieved by controlling two independent quantities, frequency and fundamental voltage magnitude. In this thesis, an angle droop controller is proposed to share power amongst converter interfaced DGs in a microgrid. As the angle of the output voltage can be changed instantaneously in a voltage source converter (VSC), controlling the angle to control the real power is always beneficial for quick attainment of steady state. Thus in converter based DGs, load sharing can be performed by drooping the converter output voltage magnitude and its angle instead of frequency. The angle control results in much lesser frequency variation compared to that with frequency droop. An enhanced frequency droop controller is proposed for better dynamic response and smooth transition between grid connected and islanded modes of operation. A modular controller structure with modified control loop is proposed for better load sharing between the parallel connected converters in a distributed generation system. Moreover, a method for smooth transition between grid connected and islanded modes is proposed. Power quality enhanced operation of a microgrid in presence of unbalanced and non-linear loads is also addressed in which the DGs act as compensators. The compensator can perform load balancing, harmonic compensation and reactive power control while supplying real power to the grid A frequency and voltage isolation technique between microgrid and utility is proposed by using a back-to-back converter. As utility and microgrid are totally isolated, the voltage or frequency fluctuations in the utility side do not affect the microgrid loads and vice versa. Another advantage of this scheme is that a bidirectional regulated power flow can be achieved by the back-to-back converter structure. For accurate load sharing, the droop gains have to be high, which has the potential of making the system unstable. Therefore the choice of droop gains is often a tradeoff between power sharing and stability. To improve this situation, a supplementary droop controller is proposed. A small signal model of the system is developed, based on which the parameters of the supplementary controller are designed. Two methods are proposed for load sharing in an autonomous microgrid in rural network with high R/X ratio lines. The first method proposes power sharing without any communication between the DGs. The feedback quantities and the gain matrixes are transformed with a transformation matrix based on the line R/X ratio. The second method involves minimal communication among the DGs. The converter output voltage angle reference is modified based on the active and reactive power flow in the line connected at point of common coupling (PCC). It is shown that a more economical and proper power sharing solution is possible with the web based communication of the power flow quantities. All the proposed methods are verified through PSCAD simulations. The converters are modeled with IGBT switches and anti parallel diodes with associated snubber circuits. All the rotating machines are modeled in detail including their dynamics.
Resumo:
Carbon sequestration in agricultural, forest, and grassland soils has been promoted as a means by which substantial amounts of CO2 may be removed from the atmosphere, but few studies have evaluated the associated impacts on changes in soil N or net global warming potential (GWP). The purpose of this research was to ( 1) review the literature to examine how changes in grassland management that affect soil C also impact soil N, ( 2) assess the impact of different types of grassland management on changes in soil N and rates of change, and (3) evaluate changes in N2O fluxes from differently managed grassland ecosystems to assess net impacts on GWP. Soil C and N stocks either both increased or both decreased for most studies. Soil C and N sequestration were tightly linked, resulting in little change in C: N ratios with changes in management. Within grazing treatments N2O made a minor contribution to GWP (0.1-4%), but increases in N2O fluxes offset significant portions of C sequestration gains due to fertilization (10-125%) and conversion (average = 27%). Results from this work demonstrate that even when improved management practices result in considerable rates of C and N sequestration, changes in N2O fluxes can offset a substantial portion of gains by C sequestration. Even for cases in which C sequestration rates are not entirely offset by increases in N2O fluxes, small increases in N2O fluxes can substantially reduce C sequestration benefits. Conversely, reduction of N2O fluxes in grassland soils brought about by changes in management represents an opportunity to reduce the contribution of grasslands to net greenhouse gas forcing.
Resumo:
No-tillage (NT) management has been promoted as a practice capable of offsetting greenhouse gas (GHG) emissions because of its ability to sequester carbon in soils. However, true mitigation is only possible if the overall impact of NT adoption reduces the net global warming potential (GWP) determined by fluxes of the three major biogenic GHGs (i.e. CO2, N2O, and CH4). We compiled all available data of soil-derived GHG emission comparisons between conventional tilled (CT) and NT systems for humid and dry temperate climates. Newly converted NT systems increase GWP relative to CT practices, in both humid and dry climate regimes, and longer-term adoption (>10 years) only significantly reduces GWP in humid climates. Mean cumulative GWP over a 20-year period is also reduced under continuous NT in dry areas, but with a high degree of uncertainty. Emissions of N2O drive much of the trend in net GWP, suggesting improved nitrogen management is essential to realize the full benefit from carbon storage in the soil for purposes of global warming mitigation. Our results indicate a strong time dependency in the GHG mitigation potential of NT agriculture, demonstrating that GHG mitigation by adoption of NT is much more variable and complex than previously considered, and policy plans to reduce global warming through this land management practice need further scrutiny to ensure success.
Resumo:
Excessive grazing pressure is detrimental to plant productivity and may lead to declines in soil organic matter. Soil organic matter is an important source of plant nutrients and can enhance soil aggregation, limit soil erosion, and can also increase cation exchange and water holding capacities, and is, therefore, a key regulator of grassland ecosystem processes. Changes in grassland management which reverse the process of declining productivity can potentially lead to increased soil C. Thus, rehabilitation of areas degraded by overgrazing can potentially sequester atmospheric C. We compiled data from the literature to evaluate the influence of grazing intensity on soil C. Based on data contained within these studies, we ascertained a positive linear relationship between potential C sequestration and mean annual precipitation which we extrapolated to estimate global C sequestration potential with rehabilitation of overgrazed grassland. The GLASOD and IGBP DISCover data sets were integrated to generate a map of overgrazed grassland area for each of four severity classes on each continent. Our regression model predicted losses of soil C with decreased grazing intensity in drier areas (precipitation less than 333 mm yr(-1)), but substantial sequestration in wetter areas. Most (93%) C sequestration potential occurred in areas with MAP less than 1800 mm. Universal rehabilitation of overgrazed grasslands can sequester approximately 45 Tg C yr(-1), most of which can be achieved simply by cessation of overgrazing and implementation of moderate grazing intensity. Institutional level investments by governments may be required to sequester additional C.
Resumo:
In this paper we propose a new method for utilising phase information by complementing it with traditional magnitude-only spectral subtraction speech enhancement through Complex Spectrum Subtraction (CSS). The proposed approach has the following advantages over traditional magnitude-only spectral subtraction: (a) it introduces complementary information to the enhancement algorithm; (b) it reduces the total number of algorithmic parameters, and; (c) is designed for improving clean speech magnitude spectra and is therefore suitable for both automatic speech recognition (ASR) and speech perception applications. Oracle-based ASR experiments verify this approach, showing an average of 20% relative word accuracy improvements when accurate estimates of the phase spectrum are available. Based on sinusoidal analysis and assuming stationarity between observations (which is shown to be better approximated as the frame rate is increased), this paper also proposes a novel method for acquiring the phase information called Phase Estimation via Delay Projection (PEDEP). Further oracle ASR experiments validate the potential for the proposed PEDEP technique in ideal conditions. Realistic implementation of CSS with PEDEP shows performance comparable to state of the art spectral subtraction techniques in a range of 15-20 dB signal-to-noise ratio environments. These results clearly demonstrate the potential for using phase spectra in spectral subtractive enhancement applications, and at the same time highlight the need for deriving more accurate phase estimates in a wider range of noise conditions.
Resumo:
Background: The hedgehog signaling pathway is vital in early development, but then becomes dormant, except in some cancer tumours. Hedgehog inhibitors are being developed for potential use in cancer. Objectives/Methods: The objective of this evaluation is to review the initial clinical studies of the hedgehog inhibitor, GDC-0449, in subjects with cancer. Results: Phase I trials have shown that GDC-0449 has benefits in subjects with metastatic or locally advanced basal-cell carcinoma and in one subjects with medulloblastoma. GDC-0449 was well tolerated. Conclusions: Long term efficacy and safety studies of GDC-0449 in these conditions and other solid cancers are now underway. These clinical trials with GDC-0449, and trials with other hedgehog inhibitors, will reveal whether it is beneficial and safe to inhibit the hedgehog pathway, in a wide range of solid tumours or not.
Resumo:
Background: Methotrexate alone or in combination with other agents is the standard treatment for moderate-to-severe rheumatoid arthritis. As the biological agents are expensive, they are not usually used until methotrexate has failed to give a good response. Thus, there is scope for the development of cheaper drugs that can be used instead of methotrexate or in addition to methotrexate. Objectives/methods: Pamapimod is a p38α inhibitor being developed for use in the treatment of rheumatoid arthritis. The objective was to evaluate the recent clinical trials of pamapimod in subjects with rheumatoid arthritis. Results: There is no clear cut evidence that pamapimod alone or in the presence of methotrexate is efficacious in subjects with rheumatoid arthritis, but it does cause adverse effects. Conclusion: It is unlikely that pamapimod will be useful in the treatment of rheumatoid arthritis.
Resumo:
A novel model for the potentiostatic discharge of primary alkaline battery cathodes is presented. The model is used to simulate discharges resulting from the stepped potential electrochemical spectroscopy (SPECS) of primary alkaline battery cathodes cathodes, and the results are validated with experimental data. We show that a model based on a single (or mean) reaction framework can be used to simulate multi-reaction discharge behaviour and we develop a consistent functional modification to the kinetic equation of the model that allows for this to occur. The model is used to investigate the effects that the initial exchange current density, i00, and the diffusion coefficient for protons in electrolytic manganese dioxide (EMD), DH+, have on SPECS discharge. The behaviour observed is consistent with the idea that individual reduction reactions, within the multi-reaction, reduction behaviour of EMD, have distinct i00 and DH+ values.
Resumo:
Type unions, pointer variables and function pointers are a long standing source of subtle security bugs in C program code. Their use can lead to hard-to-diagnose crashes or exploitable vulnerabilities that allow an attacker to attain privileged access over classified data. This paper describes an automatable framework for detecting such weaknesses in C programs statically, where possible, and for generating assertions that will detect them dynamically, in other cases. Exclusively based on analysis of the source code, it identifies required assertions using a type inference system supported by a custom made symbol table. In our preliminary findings, our type system was able to infer the correct type of unions in different scopes, without manual code annotations or rewriting. Whenever an evaluation is not possible or is difficult to resolve, appropriate runtime assertions are formed and inserted into the source code. The approach is demonstrated via a prototype C analysis tool.
Resumo:
This workshop focuses upon research about the qualities of community in music and of music in community facilitated by technologically supported relationships. Generative media systems present an opportunity for users to leverage computational systems to form new relationships through interactive and collaborative experiences. Generative music and art are a relatively new phenomenon that use procedural invention as a creative technique to produce music and visual media. Early systems have demonstrated the potential to provide access to collaborative ensemble experiences for users with little formal musical or artistic expertise. This workshop examines the relational affordances of these systems evidenced by selected field data drawn from the Network Jamming Project. These generative performance systems enable access to unique ensembles with very little musical knowledge or skill and offer the possibility of interactive relationships with artists and musical knowledge through collaborative performance. In this workshop we will focus on data that highlights how these simulated experiences might lead to understandings that may be of social benefit. Conference participants will be invited to jam in real time using virtual interfaces and to evaluate purposively selected video artifacts that demonstrate different kinds of interactive relationship with artists, peers, and community and that enrich the sense of expressive self. Theoretical insights about meaningful engagement drawn from the longitudinal and cross cultural experiences will underpin the discussion and practical presentation.
Resumo:
This study reports the potential toxicological impact of particles produced during biomass combustion by an automatic pellet boiler and a traditional logwood stove under various combustion conditions using a novel profluorescent nitroxide probe BPEAnit. This probe is weakly fluorescent, but yields strong fluorescence emission upon radical trapping or redox activity. Samples were collected by bubbling aerosol through an impinger containing BPEAnit solution, followed by fluorescence measurement. The fluorescence of BPEAnit was measured for particles produced during various combustion phases, at the beginning of burning (cold start), stable combustion after refilling with the fuel (warm start) and poor burning conditions. For particles produced by the logwood stove under cold-start conditions significantly higher amounts of reactive species per unit of particulate mass were observed compared to emissions produced during a warm start. In addition, sampling of logwood burning emissions after passing through a thermodenuder at 250oC resulted in an 80-100% reduction of the fluorescence signal of BPEAnit probe, indicating that the majority of reactive species were semivolatile. Moreover, the amount of reactive species showed a strong correlation with the amount of particulate organic material. This indicates the importance of semivolatile organics in particle-related toxicity. Particle emissions from the pellet boiler, although of similar mass concentration, were not observed to lead to an increase in fluorescence signal during any of the combustion phases.
Resumo:
The burden of rising health care expenditures has created a demand for information regarding the clinical and economic outcomes associated with complementary and alternative medicines. Meta-analyses of randomized controlled trials have found Hypericum perforatum preparations to be superior to placebo and similarly effective as standard antidepressants in the acute treatment of mild to moderate depression. A clear advantage over antidepressants has been demonstrated in terms of the reduced frequency of adverse effects and lower treatment withdrawal rates, low rates of side effects and good compliance, key variables affecting the cost-effectiveness of a given form of therapy. The most important risk associated with use is potential interactions with other drugs, but this may be mitigated by using extracts with low hyperforin content. As the indirect costs of depression are greater than five times direct treatment costs, given the rising cost of pharmaceutical antidepressants, the comparatively low cost of Hypericum perforatum extract makes it worthy of consideration in the economic evaluation of mild to moderate depression treatments.
Resumo:
Managing the sustainability of urban infrastructure requires regular health monitoring of key infrastructure such as bridges. The process of structural health monitoring involves monitoring a structure over a period of time using appropriate sensors, extracting damage sensitive features from the measurements made by the sensors, and analysing these features to determine the current state of the structure. Various techniques are available for structural health monitoring of structures, and acoustic emission is one technique that is finding an increasing use in the monitoring of civil infrastructures such as bridges. Acoustic emission technique is based on the recording of stress waves generated by rapid release of energy inside a material, followed by analysis of recorded signals to locate and identify the source of emission and assess its severity. This chapter first provides a brief background of the acoustic emission technique and the process of source localization. Results from laboratory experiments conducted to explore several aspects of the source localization process are also presented. The findings from the study can be expected to enhance knowledge of the acoustic emission process, and to aid the development of effective bridge structure diagnostics systems.
Resumo:
This paper presents techniques which can be viewed as pre-processing step towards diagnosis of faults in a small size multi-cylinder diesel engine. Preliminary analysis of the acoustic emission (AE) signals is outlined, including time-frequency analysis, selection of optimum frequency band. Some results of applying mean field independent component analysis (MFICA) to separate the AE root mean square (RMS) signals are also outlined. The results on separation of RMS signals show this technique has the potential of increasing the probability to successfully identify the AE events associated with the various mechanical events.