882 resultados para Post-Weld Heat Treatment


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the synthesis of Nd-doped SrSnO3 by the polymeric precursor method, with calcination between 250 and 700 A degrees C is reported. The powder precursors were characterized by TG/DTA and high temperature X-ray diffraction (HTXRD). After heat treatment, the material was characterized by XRD and infrared spectroscopy. Ester and carbonate amounts were strictly related to Nd-doping. According to XRD patterns, the orthorhombic perovskite was obtained at 700 A degrees C for SrSnO3 and SrSn0.99Nd0.01O3. For Sr0.99Nd0.01SnO3, the kinetics displayed an important hole in the crystallization process, as no peak was observed in HTXRD up to 700 A degrees C, while a XRD patterns showed a crystalline material after calcination at 250 A degrees C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we describe the preparation of glass ceramics in the Ga2S3 - GeS2 - CsCl system Visible and infrared transmitting glass ceramics were reproducibly obtained by appropriated heat treatment of the base glass Crystals with controllable size of about 40 nm were homogeneously generated in the glassy matrix X-ray diffraction characterizations have shown that gallium acts as nucleating agent in this material, giving rise to alpha-Ga2S3 crystals Improved thermo-mechanical properties such as dilatation coefficient and resistance to fracture propagation have been observed in the prepared glass ceramics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tin glycolate particles were prepared by a simple, one-step, polyol-mediated synthesis in air in which tin oxalate precursor was added to ethylene glycol and heated at reflux. Hexagonal-shaped, micron-sized tin glycolate particles were formed when the solution had cooled. A series of tin oxides was produced by calcination of the synthesized tin glycolate at 600-800 degrees C. It was revealed that the micron-sized, hexagonal-shaped tin glycolate now consisted of nanosized tin-based particles (80-120 nm), encapsulated within a tin glycolate shell. XRD, TGA, and FT-IR measurements were conducted to account for the three-dimensional growth of the tin glycolate particles. When applied as an anode material for Li-ion batteries, the synthesized tin glycolate particles showed good electro-chemical reactivity in Li-ion insertion/ deinsertion, retaining a specific capacity of 416mAhg(-1) beyond 50cycles. Ibis performance was significantly better than those of all the other tin oxides nanoparticles (< 160mAhg(-1)) obtained after heat treatment in air. We strongly believe that the buffering of the volume expansion by the glycolate upon Li-Sn alloying is the main factor for the improved cycling of the electrode.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of the temperature on the nucleation of silver nanoparticles (NPs) in Tm3+/Yb3+ codoped PbO-GeO2 glasses was studied in this work. The infrared-to-visible frequency upconversion (UC) luminescence of Tm3+ ions was used to probe the NPs nucleation and the results were correlated with the increase of the heat-treatment temperature. Emission spectra in the blue-red region were measured by exciting the samples with a cw 980 nm diode laser in resonance with the Yb3+ transition (F-2(7/2) -> F-2(5/2)). The results were correlated with transmission electron microscopy measurements and revealed the different behavior of the nucleation process as a function of temperature.The enhanced UC emission in the visible region is attributed to the increased local field in the proximity of the silver NPs combined with the Yb3+ -> Tm3+ energy transfer. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pb2CrO5 nanoparticles were embedded in an amorphous SiO2 matrix by the sol-gel process. The pH and heat treatment effects were evaluated in terms of structural, microstructural and optical properties from Pb2CrO5/SiO2 compounds. X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), energy dispersive spectroscopy (EDS), and diffuse reflectance techniques were employed. Kubelka-Munk theory was used to calculate diffuse reflectance spectra that were compared to the experimental results. Finally, colorimetric coordinates of the Pb2CrO5/SiO2 compounds were shown and discussed. In general, an acid pH initially dissolves Pb2CrO5 nanoparticles and following heat treatment at 600 A degrees C crystallized into PbCrO4 composition with grain size around 6 nm in SiO2 matrix. No Pb2CrO5 solubilization was observed for basic pH. These nanoparticles were incorporated in silica matrix showing a variety of color ranging from yellow to orange.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is presented a study conducted on the physical and electrochemical properties of fluorinated a-C:H films deposited onto a commercial aluminum alloy (AA 5052). The coatings were deposited from mixtures of 91% of acetylene and 9% of argon by plasma immersion ion implantation and deposition technique, PIIID. Total gas pressure was 44 Pa and deposition time (t(dep)) was varied from 300 to 1200 s. The depositing plasmas were generated by the application of radiofrequency power (13.56 MHz, 100W) to the upper electrode and high voltage negative pulses (2400 V. 300 Hz) to the sample holder. Fluorine was incorporated in a post-deposition plasma treatment (13.56 MHz, 70W, 13 Pa) generated from sulfur hexafluoride atmosphere. Chemical structure and composition of the films were investigated using infrared reflectance/absorbance spectroscopy and X-ray photoelectron spectroscopy. The corrosion resistance of the layers was determined by electrochemical impedance spectroscopy (EIS) in a 3.5% NaCl solution, at room temperature. Films presented good adhesion to the substrates and are classified as hydrogenated amorphous carbon (a-C:H) with oxygen traces. Fluorine was detected in all the samples after the post-deposition treatment being its proportion independent on the deposition time. Film thickness presented different tendencies with t(dep), revealing the variation of the deposition rate as a function of the deposition time. Such fluorinated a-C:H films improved the corrosion resistance of the aluminum surface. In a general way the corrosion resistance was higher for films prepared with lower deposition times. The variation of sample temperature with t(dep) was found to be decisive for the concentration of defects in the films and, consequently, for the performance of the samples in electrochemical tests. Results are interpreted in terms of the energy delivered to the growing layer by ionic bombardment. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)