911 resultados para Population genetics
Resumo:
Interleukin 18 (IL18) is a proinflammatory cytokine whose levels are increased in the subclinical stage of insulin-dependent (type I) diabetes mellitus. Previous case-control studies have reported associations between IL18 -607C>A and -137G>C promoter polymorphisms and type I diabetes. We performed case-control and family-based association studies employing Pyrosequencing to assess if these IL18 polymorphisms are also associated with the development of type I diabetes in the Northern Ireland population. The chi2 analysis of genotype and allele frequencies for the IL18 polymorphisms in cases (n=433) vs controls (n=426) revealed no significant differences (P>0.05). Assessment of allele transmission distortion from informative parents to affected offspring also failed to confirm previously reported associations. Stratification of these analyses for age-at-onset and HLA-DR type did not reveal any significance associations. In conclusion, our data do not support the strong positive associations of IL18 promoter polymorphisms with type I diabetes reported in previous smaller studies.
Resumo:
Background: The complement factor H (CFH) gene has been recently confirmed to play an essential role in the development of age-related macular degeneration (AMD). There are conflicting reports of its role in coronary heart disease. This study was designed to investigate if, using a family-based approach, there was an association between genetic variants of the CFH gene and risk of early-onset coronary heart disease. Methods: We evaluated 6 SNPs and 5 common haplotypes in the CFH gene amongst 1494 individuals in 580 Irish families with at least one member prematurely affected with coronary heart disease. Genotypes were determined by multiplex SNaPshot technology. Results: Using the TDT/S-TDT test, we did not find an association between any of the individual SNPs or any of the 5 haplotypes and early-onset coronary heart disease. Conclusion: In this family-based study, we found no association between the CFH gene and early-onset coronary heart disease. © 2007 Meng et al; licensee BioMed Central Ltd.
Resumo:
Glaciation over the Pleistocene induced dramatic range fluctuations for species across North America such that postglacial recolonization by southern refugial lineages has characterized the genetic structure of northern North American species. Based on the leading edge model of postglacial range expansion, dispersal and rapid population growth in these northern taxa is expected to produce vast areas of genetic homogeneity. Previous work on the widely distributed spring peeper (Pseudacris crucifer) revealed six distinct mitochondrial lineages that diverged between 3-11 mya, expanding and contracting with glacial cycles. Beginning 16,000 yBP, receding glaciers permitted Eastern lineage refugia residing in the southern Appalachians to migrate northward into the St. Lawrence Valley then westward through most of central Canada. Peripheral populations at the northwestern range limit of P. crucifer in central Manitoba are likely descended from this westward expanding Eastern lineage. According to the central-marginal hypothesis, founder effects from colonization as well as limited gene flow is expected to reveal genetic differentiation and lower genetic diversity in peripheral populations. The goal of my study is to further our understanding of peripheral range dynamics in peripheral Manitoba populations of P. crucifer by determining their genetic affinity and diversity relative to more central populations in Ontario and Minnesota. In this study I amplified and aligned cytochrome b sequences from sample sites across central Manitoba to reconstruct a Bayesian phylogeny for P. crucifer; additionally, microsatellite loci were genotyped to estimate genetic diversity. Results from this study affirmed Eastern lineage descent for peripheral Manitoba sites by aligning with Ontario. Initial colonization by the Interior lineage between glacial retreat and the appearance of arid vicariance events may explain the apparent introgression of non-Eastern lineages in Manitoba. However, genetic diversity measured in expected heterozygosity (H¬e) was not found to be significantly different in Manitoba genotypes. Greater isolation by distance and inbreeding relative to Ontario and Minnesota is likely the primary driver of genetic variation in these sites. Further sampling is necessary to generate a more complete genetic population structure for P. crucifer.
Resumo:
Knowledge of the levels of genetic diversity maintained in natural populations can play a central role in conservation programmes, particularly in threatened habitats or species. Fluctuations in population size can lead to loss of variation and, consequently, increase the risk of extinction. We have examined whether such a genetic bottleneck has occurred in populations of two species in the seagrass genus Zostera, which are believed to have been affected by an outbreak of wasting disease at the start of the last century. A test for heterozygote excess at five nuclear microsatellite loci did not suggest the occurrence of a genetic bottleneck, but analysis of seven chloroplast microsatellite loci and sequence data from two regions did suggest a bottleneck in the chloroplast genome. Extremely low levels of between-population diversity suggest that all subpopulations can be treated as a single management unit for each species. Comparable levels of nuclear genetic diversity were found in the three populations of the primarily sexual Zostera marina var. angustifolia studied but a wider range of within-population diversity was found in Zostera noltii, which displays both. sexual and vegetative reproductive strategies. This may be due to an increase in sexual recruitment due to localised fresh water inflow into the study site near to the most diverse population. Such populations should be prioritised as source material for any replanting or remediation due to natural or anthropogenic loss of Zostera beds in the area.
Resumo:
Coronary heart disease (CHD) remains a leading cause of death across the world. A region on chromosome 9p21.3 has been recently reported to be associated with CHD. We evaluated 3 SNPs and 3 common haplotypes in the 9p21.3 region in 1494 individuals from 580 Irish families, where at least 1 member had early-onset (males
Resumo:
Recent advances in neuroimaging technologies have allowed ever more detailed studies of the human brain. The combination of neuroimaging techniques with genetics may provide a more sensitive measure of the influence of genetic variants on cognitive function than behavioural measures alone. Here we present a review of functional magnetic resonance imaging (fMRI) studies of genetic links to executive functions, focusing on sustained attention, working memory and response inhibition. In addition to studies in the normal population, we also address findings from three clinical populations: schizophrenia, ADHD and autism spectrum disorders. While the findings in the populations studied do not always converge, they all point to the usefulness of neuroimaging techniques such as fMRI as potential endophenotypes for parsing the genetic aetiology of executive function. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Contemporary genetic structure of Atlantic salmon (Salmo salar L.) in the River Moy in Ireland is shown here to be strongly related to landscape features and population demographics, with populations being defined largely by their degree of physical isolation and their size. Samples of juvenile salmon were collected from the 17 major spawning areas on the river Moy and from one spawning area in each of five smaller nearby rivers. No temporal allele frequency differences were observed within locations for 12 microsatellite loci, whereas nearly all spatial samples differed significantly, suggesting that each was a separate population. Bayesian clustering and landscape genetic analyses suggest that these populations can be combined hierarchically into five genetically informative larger groupings. Lakes were found to be the single most important determinant of the observed population structure. Spawning area size was also an important factor. The salmon population of the closest nearby river resembled genetically the largest Moy population grouping. In addition, we showed that anthropogenic influences on spawning habitats, in this case arterial drainage, can affect relationships between populations. Our results show that Atlantic salmon biodiversity can be largely defined by geography, and thus, knowledge of landscape features (for example, as characterized within Geographical Information Systems) has the potential to predict population structure in other rivers without an intensive genetic survey, or at least to help direct sampling. This approach of combining genetics and geography, for sampling and in subsequent statistical analyses, has wider application to the investigation of population structure in other freshwater/anadromous fish species and possibly in marine fish and other organisms.
Resumo:
The cool-water copepod Calanus finmarchicus is a key species in North Atlantic marine ecosystems since it represents an important food resource for the developmental stages of several fish of major economic value. Over the last 40 years, however, data from the Continuous Plankton Recorder survey have highlighted a 70 per cent reduction in C. finmarchicus biomass, coupled with a gradual northward shift in the species's distribution, which have both been linked with climate change. To determine the potential for C. finmarchicus to track changes in habitat availability and maintain stable effective population sizes, we have assessed levels of gene flow and dispersal in current populations, as well as using a coalescent approach together with palaeodistribution modelling to elucidate the historical population demography of the species over previous changes in Earth's climate. Our findings indicate high levels of dispersal and a constant effective population size over the period 359 000-566 000 BP and suggest that C. finmarchicus possesses the capacity to track changes in available habitat, a feature that may be of crucial importance to the species's ability to cope with the current period of global climate change.
Resumo:
The effect that breed standards and selective breeding practices have on the welfare of pedigree dogs has recently come under scrutiny from both the general public and scientific community. Recent research has suggested that breeding for particular aesthetic traits, such as tightly curled tails, highly domed skulls and short muzzles predisposes dogs with these traits to certain inherited defects, such as spina bifida, syringomyelia and brachycephalic airway obstruction syndrome, respectively. Further to this, there is a very large number of inherited diseases that are not related to breed standards, which are thought to be prevalent, partly as a consequence of inbreeding and restricted breeding pools. Inherited diseases, whether linked to conformation or not, have varying impact on the individuals affected by them, and affect varying proportions of the pedigree dog population. Some diseases affect few breeds but are highly prevalent in predisposed breeds. Other diseases affect many breeds, but have low prevalence within each breed. In this paper, we discuss the use of risk analysis and severity diagrams as means of mapping the overall problem of inherited disorders in pedigree dogs and, more specifically, the welfare impact of specific diseases in particular breeds.