970 resultados para Pluto (Planet)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The dynamics of some fictitious satellites of Venus and Mars are studied considering only solar perturbation and the oblateness of the planet, as disturbing forces. Several numerical integrations of the averaged system, taking different values of the obliquity of ecliptic (a), show the existence of strong chaotic motion, provided that the semi major axis is near a critical value. As a consequence, large increase of eccentricities occur and the satellites may collide with the planet or cross possible internal orbits. Even starting from almost circular and equatorial orbits, most satellites can easily reach prohibitive values. The extension of the chaotic zone depends clearly on the value ε, so that, previous regular regions may become chaotic, provided ε increases sufficiently. © 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Several years of total ozone measured from space by the ERS-2 GOME, the Earth Probe TOMS, and the ADEOS TOMS, are compared with high-quality ground-based observations associated with the Network for the Detection of Stratospheric Change (NDSC), over an extended latitude range and a variety of geophysical conditions. The comparisons with each spaceborne sensor are combined altogether for investigating their respective solar zenith angle (SZA) dependence, dispersion, and difference of sensitivity. The space- and ground-based data are found to agree within a few percent on average. However, the analysis highlights for both GOME and TOMS several sources of discrepancies: (i) a SZA dependence with TOMS beyond 80° SZA; (ii) a seasonal SZA dependence with GOME beyond 70° SZA; (iii) a difference of sensitivity with GOME at high latitudes; (iv) a difference of sensitivity to low ozone values between satellite and SAOZ sensors around the southern tropics; (v) a north/south difference of TOMS with the ground-based observations; and (vi) internal inconsistencies in GOME total ozone. © 2001 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
It has been estimated that the entire Earth generates heat corresponding to about 40 TW (equivalent to 10,000 nuclear power plants) which is considered to originate mainly from the radioactive decay of elements like U, Th and K, deposited in the crust and mantle of the Earth. Radioactivity of these elements produce not only heat but also antineutrinos (called geo-antineutrinos) which can be observed by terrestrial detectors. We investigate the possibility of discriminating among Earth composition models predicting different total radiogenic heat generation, by observing such geo-antineutrinos at Kamioka and Gran Sasso, assuming KamLAND and Borexino (type) detectors, respectively, at these places. By simulating the future geo-antineutrino data as well as reactor antineutrino background contributions, we try to establish to which extent we can discriminate among Earth composition models for given exposures (in units of kt · yr) at these two sites on our planet. We use also information on neutrino mixing parameters coming from solar neutrino data as well as KamLAND reactor antineutrino data, in order to estimate the number of geo-antineutrino induced events. © SISSA/ISAS 2003.
Resumo:
The Amazonian regions are characterized by large space-time variability in the humidity fields due to the intense convective process in those areas associated with the great humidity potential generated by high temperatures. An experiment denominated RACCI/DRY-TO-WET (RAdiation, Cloud, and Climate Interactions in the Amazonia during the DRY-TO-WET Transition Season) was carried out in the Brazilian Amazonian Region in 2002. The IWV values from GPS and other techniques, such as radiosondes, radiometer and humidity sounding satellites were used in this experiment to supply subsidies to evaluate the aerosols influence in the associated processes modifications to seasonality of atmospheric water vapor. Those regions are one of the most humid of the planet, where IWV (Integrated Water Vapor) average values are in the order of 50 kg/m2. As according the literature the IWV quantification using GPS has not been explored in those circumstances, the objective this paper is to present the preliminary results obtained in the evaluation of the GPS performance in Amazonian Regions when comparing with other techniques. The tendency measurement values indicated that the IWV values from GPS tend to be larger than those from radiosondes and smaller than those from radiometer. On the other hand, IWV values from GPS are very close of the average values supplied by radiosondes and radiometer. Due to the great amount of atmospheric water vapor existent in this region, the results obtained in the experiment in percentile terms are quite better than those found in the literature, which are around of 10%.
Resumo:
We present a historical perspective about the ideas concerning the origin of life. After displaying the main topics necessary for understanding life's origin, the main characteristics of the present life forms and their relationships are shown, suggesting a common ancestor. The conditions for prebiotic chemistry in terrestrial or interplanetary environments are reviewed. We put in context the arguments about the early origin of replicators versus metabolism. The very narrow window for life settlement in the early Earth is stressed, pointing to the likelihood of life arising in other places in the Universe. Finally, we present the cornerstones of current search for life outside our planet.
Resumo:
The gravitational capture was initially used to understand the capture of planetary satellites. However, in the 90's decade, this phenomenon was applied in spacecraft trajectories. Belbruno and Miller studied missions in the Earth-Moon system that uses this technique to save fuel during the insertion of the spacecraft in its final orbit around the Moon. Using a parameter defined as twice the two-body energy of the planet-particle system, Yamakawa also studied the gravitational capture in the Earth-Moon system. In the present paper, this technique is used to study a mission that goes to the Neptune system and perform a gravitational capture in the satellite Triton. The results show direct and retrograde trajectories, for different values of the initial conditions.
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
An analytical expansion of the disturbing function arising from direct planetary perturbations on the motion of satellites is derived. As a Fourier series, it allows the investigation of the secular effects of these direct perturbations, as well as of every argument present in the perturbation. In particular, we construct an analytical model describing the evection resonance between the longitude of pericenter of the satellite orbit and the longitude of a planet, and study briefly its dynamic. The expansion developed in this paper is valid in the case of planar and circular planetary orbits, but not limited in eccentricity or inclination of the satellite orbit. © 2012 Springer Science+Business Media Dordrecht.
Resumo:
Includes bibliography
Resumo:
Aims.We investigate the dynamics of pebbles immersed in a gas disk interacting with a planet on an eccentric orbit. The model has a prescribed gap in the disk around the location of the planetary orbit, as is expected for a giant planet with a mass in the range of 0.1-1 Jupiter masses. The pebbles with sizes in the range of 1 cm to 3 m are placed in a ring outside of the giant planet orbit at distances between 10 and 30 planetary Hill radii. The process of the accumulation of pebbles closer to the gap edge, its possible implication for the planetary accretion, and the importance of the mass and the eccentricity of the planet in this process are the motivations behind the present contribution. Methods. We used the Bulirsch-Stoer numerical algorithm, which is computationally consistent for close approaches, to integrate the Newtonian equations of the planar (2D), elliptical restricted three-body problem. The angular velocity of the gas disk was determined by the appropriate balance between the gravity, centrifugal, and pressure forces, such that it is sub-Keplerian in regions with a negative radial pressure gradient and super-Keplerian where the radial pressure gradient is positive. Results. The results show that there are no trappings in the 1:1 resonance around the L 4 and L5 Lagrangian points for very low planetary eccentricities (e2 < 0.07). The trappings in exterior resonances, in the majority of cases, are because the angular velocity of the disk is super-Keplerian in the gap disk outside of the planetary orbit and because the inward drift is stopped. Furthermore, the semi-major axis location of such trappings depends on the gas pressure profile of the gap (depth) and is a = 1.2 for a planet of 1 MJ. A planet on an eccentric orbit interacts with the pebble layer formed by these resonances. Collisions occur and become important for planetary eccentricity near the present value of Jupiter (e 2 = 0.05). The maximum rate of the collisions onto a planet of 0.1 MJ occurs when the pebble size is 37.5 cm ≤ s < 75 cm; for a planet with the mass of Jupiter, it is15 cm ≤ s < 30 cm. The accretion stops when the pebble size is less than 2 cm and the gas drag dominates the motion. © 2013 ESO.