955 resultados para Plum Island Animal Disease Laboratory.
Resumo:
Infections involving Salmonella enterica subsp. enterica serovars have serious animal and human health implications; causing gastroenteritis in humans and clinical symptoms, such as diarrhoea and abortion, in livestock. In this study an optical genetic mapping technique was used to screen 20 field isolate strains from four serovars implicated in disease outbreaks. The technique was able to distinguish between the serovars and the available sequenced strains and group them in agreement with similar data from microarrays and PFGE. The optical maps revealed variation in genome maps associated with antimicrobial resistance and prophage content in S. Typhimurium, and separated the S. Newport strains into two clear geographical lineages defined by the presence of prophage sequences. The technique was also able to detect novel insertions that may have had effects on the central metabolism of some strains. Overall optical mapping allowed a greater level of differentiation of genomic content and spatial information than more traditional typing methods.
Resumo:
Two genetic fingerprinting techniques, pulsed-field gel electrophoresis (PFGE) and ribotyping, were used to characterize 207 Escherichia coli O157 isolates from food animals, foods of animal origin, and cases of human disease (206 of the isolates were from the United Kingdom). In addition, 164 of these isolates were also phage typed. The isolates were divided into two general groups: (i) unrelated isolates not known to be epidemiologically linked (n = 154) and originating from food animals, foods and the environment, or humans and (ii) epidemiologically related isolates (n = 53) comprised of four related groups (RGs) originating either from one farm plus the abattoir where cattle from that farm were slaughtered or from one of three different English abattoirs. PFGE was conducted with the restriction endonuclease XbaI. while for ribotyping, two restriction endonucleases (PstI and SphI) were combined to digest genomic DNAs simultaneously. The 207 E. coli O157 isolates produced 97 PFGE profiles and 51 ribotypes. The two genetic fingerprinting methods had similar powers to discriminate the 154 epidemiologically unrelated E. coli O157 isolates in the study (Simpson's index of diversity [D] = 0.98 and 0.94 for PFGE typing and ribotyping, respectively). There was no correlation between the source of an isolate (healthy meat or milk animals, retail meats, or cases of human infection) and either particular PFGE or ribotype profiles or clusters. Combination of the results of both genetic fingerprinting methods produced 146 types, significantly more than when either of the two methods was used individually. Consequently, the superior discriminatory performance of the PFGE-ribotyping combination was proven in two ways: (i) by demonstrating that the majority of the E. coli O157 isolates with unrelated histories were indeed distinguishable types and (ii) by identifying some clonal groups among two of the four RGs of E. coli O157 isolates (comprising PFGE types different by just one or two bands), the relatedness of which would have remained unconfirmed otherwise.
Resumo:
Treponema have been implicated recently in the pathogenesis of digital dermatitis (DID) and contagious ovine digital dermatitis (CODD) that are infectious diseases of bovine and ovine foot tissues, respectively. Previous analyses of treponemal 16S rDNA sequences, PCR-amplified directly from DID or CODD lesions, have suggested relatedness of animal Treponema to some human oral Treponema species isolated from periodontal tissues. In this study a range of adhesion and virulence-related properties of three animal Treponema isolates have been compared with representative human oral strains of Treponema denticola and Treponema vincentii. In adhesion assays using biotinylated treponemal cells, T denticola cells bound in consistently higher numbers to fibronectin, laminin, collagen type 1, gelatin, keratin and lactoferrin than did T. vincentii or animal Treponema isolates. However, animal DID strains adhered to fibrinogen at equivalent or greater levels than T denticola. All Treponema strains bound to the amino-terminal heparin l/fibrin I domain of fibronectin. 16S rDNA sequence analyses placed ovine strain UB1090 and bovine strain UB1467 within a cluster that was phylogenetically related to T vincentii, while ovine strain UB1466 appeared more closely related to T denticola. These observations correlated with phenotypic properties. Thus, T denticola ATCC 35405, GM-1, and Treponema UB1466 had similar outer-membrane protein profiles, produced chymotrypsin-like protease (CTLP), trypsin-like protease and high levels of proline iminopeptidase, and co-aggregated with human oral bacteria Porphyromonas gingivalis and Streptococcus crista. Conversely, T vincentii ATCC 35580, D2A-2, and animal strains UB1090 and UB1467 did not express CTLP or trypsin-like protease and did not co-aggregate with P. gingivalis or S. crista. Taken collectively, these results suggest that human oral-related Treponema have broad host specificity and that similar control or preventive strategies might be developed for human and animal Treponema-associated infections.
Resumo:
Enteric bacteria with a demonstrable or potential ability to form attaching-effacing lesions, so-called attaching-effacing (AE) bacteria, have been found in the intestinal tracts of a wide variety of warm-blooded animal species, including man. In some host species, for example cattle, pigs, rabbits and human beings, attaching-effacing Escherichia coli (AEEC) have an established role as enteropathogens. In other host species, AE bacteria are of less certain significance. With continuing advances in the detection and typing of AE strains, the importance of these bacteria for many hosts is likely to become clearer. The pathogenic effects of AE bacteria result from adhesion to the intestinal mucosa by a variety of mechanisms, culminating in the formation of the characteristic intimate adhesion of the AE lesion. The ability to induce AE lesions is mediated by the co-ordinated expression of some 40 bacterial genes organized within a so-called pathogenicity island, known as the "Locus for Enterocyte Effacement". It is also believed that the production of bacterial toxins, principally Vero toxins, is a significant virulence factor for some A-EEC strains. Recent areas of research into AE bacteria include: the use of Citrobacter rodentium to model human AEEC disease; quorum-sensing mechanisms used by AEEC to modulate virulence gene expression; and the potential role of adhesion in the persistent colonization of the intestine by AE bacteria. This review of AE bacteria covers their molecular biology, their occurrence in various animal species, and the diagnosis, pathology and clinical aspects of animal diseases with which they are associated. Reference is made to human pathogens where appropriate. The focus is mainly on natural colonization and disease, but complementary experimental data are also included. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The influence of geographical origin, host animal and presence of the stx gene on the virulence of Escherichia coli O26 strains from ruminants was determined in this study. A clear association was found between the virulence profile and geographical origin of Shiga-toxigenic E. coli (STEC) O26 strains, with UK STEC O26 strains harbouring virtually identical profiles, whilst central European strains showed considerable heterogeneity in plasmid-encoded genes. The former group were also more likely to be non-motile and katP gene positive. Comparison of UK STEC and atypical enteropathogenic E. coli (aEPEC O26 strains showed that the presence of the stx1 gene was positively correlated with the presence of espP and katP genes and negatively associated with the presence of the yagP-yagT region and with rhamnose fermentation. In contrast to the uniform profiles of STEC O26 strains from ruminants in the UK, aEPEC O26 strains of bovine and ovine origin showed diverse profiles both within and between groups, and could not be separated into discrete groups. These results indicate that the characteristics of UK O26 strains from ruminants are distinct from those of O26 strains from ruminants and humans in other regions in central Europe. Such differences are expected to influence the zoonotic potential of this pathogen and the subsequent incidence of O26-associated human disease.
Resumo:
Disease in farm animals has significant economic impacts on livestock production and incurs substantial costs for societies. Impacts affect not only livestock farms and the livestock industries but also sectors outside of farming. Important negative externalities of livestock disease include impacts on the health of other producers’ livestock, on human health, and on animal welfare. Good disease risk management/biosecurity and good animal welfare are public goods. Not taking account of these externality and public good aspects can lead to a misallocation of resources for livestock disease control. In such instances, there may be a strong case for government or other authority to intervene to ensure a better use of resources. There are a number of policy instruments that can be implemented for this purpose. One potential instrument is a Farm Animal Health and Welfare Stewardship Scheme funded under Pillar II of the CAP. A number of countries have public–private partnership cost-sharing schemes that aim to share appropriately both responsibilities and costs of epidemic livestock disease. There is a strong future agenda for appropriate intervention by governments in the management of livestock disease risks, including responsibility and cost sharing for livestock disease control, within the European Union and elsewhere.
Resumo:
Implications Overall, milk consumption provides health benefits to all age groups. Effects of cheese, butter, and fat-reduced and saturated fat-reduced milk and dairy products are less clear and require more research. Public health nutrition policy related to milk consumption should be based on the evidence presented and not solely on the believed negative effects of dietary fat. Milk is not a white elixir since no study has reported eternal youth from drinking it, but there is certainly no evidence that milk is a white poison!
Resumo:
Conceptualizing climate as a distinct variable limits our understanding of the synergies and interactions between climate change and the range of abiotic and biotic factors, which influence animal health. Frameworks such as eco-epidemiology and the epi-systems approach, while more holistic, view climate and climate change as one of many discreet drivers of disease. Here, I argue for a new paradigmatic framework: climate-change syndemics. Climate-change syndemics begins from the assumption that climate change is one of many potential influences on infectious disease processes, but crucially is unlikely to act independently or in isolation; and as such, it is the inter-relationship between factors that take primacy in explorations of infectious disease and climate change. Equally importantly, as climate change will impact a wide range of diseases, the frame of analysis is at the collective rather than individual level (for both human and animal infectious disease) across populations.
Resumo:
A network is a natural structure with which to describe many aspects of a plant pathosystem. The article seeks to set out in a nonmathematical way some of the network concepts that promise to be useful in managing plant disease. The field has been stimulated by developments designed to help understand and manage animal and human disease, as well as by technical infrastructures, such as the internet. It overlaps partly with landscape ecology. The study of networks has helped identify likely ways to reduce flow of disease in traded plants, to find the best sites to monitor as warning sites for annually reinvading disease, and to understand the fundamentals of how a pathogen spreads in different structures. A tension between the free flow of goods or species down communication channels and free flow of pathogens down the same pathways is highlighted.
Resumo:
We investigated the potential of soil moisture and nutrient amendments to enhance the biodegradation of oil in the soils from an ecologically unique semi-arid island. This was achieved using a series of controlled laboratory incubations where moisture or nutrient levels were experimentally manipulated. Respired CO2 increased sharply with moisture amendment reflecting the severe moisture limitation of these porous and semi-arid soils. The greatest levels of CO2 respiration were generally obtained with a soil pore water saturation of 50–70%. Biodegradation in these nutrient poor soils was also promoted by the moderate addition of a nitrogen fertiliser. Increased biodegradation was greater at the lowest amendment rate (100 mg N kg−1 soil) than the higher levels (500 or 1,000 mg N kg−1 soil), suggesting the higher application rates may introduce N toxicity. Addition of phosphorous alone had little effect, but a combined 500 mg N and 200 mg P kg−1 soil amendment led to a synergistic increase in CO2 respiration (3.0×), suggesting P can limit the biodegradation of hydrocarbons following exogenous N amendment.
Resumo:
Foods derived from animals are an important source of nutrients for humans. Concerns have been raised that due to their SFA content, dairy foods may increase the risk of cardiometabolic disease. Prospective studies do not indicate an association between milk consumption and increased disease risk although there are less data for other dairy foods. SFA in dairy products can be partially replaced by cis-MUFA through nutrition of the dairy cow although there are too few human studies to conclude that such modification leads to reduced chronic disease risk. Intakes of LCn-3 FA are sub-optimal in many countries and while foods such as poultry meat can be enriched by inclusion of fish oil in the diet of the birds, fish oil is expensive and has an associated risk that the meat will be oxidatively unstable. Novel sources of LCn-3 FA such as kirll oil, algae, and genetically modified plants may prove to be better candidates for meat enrichment. The value of FA-modified foods cannot be judged by their FA composition alone and there needs to be detailed human intervention studies carried out before judgements concerning improved health value can be made. Practical applications: The amount and FA composition of dietary lipids are known to contribute to the risk of chronic disease in humans which is increasing and becoming very costly to treat. The use of animal nutrition to improve the FA composition of staple foods such as dairy products and poultry meat has considerable potential to reduce chronic risk at population level although judgements must not be based simply on FA composition of the foods.
Resumo:
A general consistency in the sequential order of petroleum hydrocarbon reduction in previous biodegradation studies has led to the proposal of several molecularly based biodegradation scales. Few studies have investigated the biodegradation susceptibility of petroleum hydrocarbon products in soil media, however, and metabolic preferences can change with habitat type. A laboratory based study comprising gas chromatography–mass spectrometry (GC–MS) analysis of extracts of oil-treated soil samples incubated for up to 161 days was conducted to investigate the biodegradation of crude oil exposed to sandy soils of Barrow Island, home to both a Class ‘‘A” nature reserve and Australia’s largest on-shore oil field. Biodegradation trends of the hydrocarbon-treated soils were largely consistent with previous reports but some unusual behaviour was recognised both between and within hydrocarbon classes. For example, the n-alkanes persisted at trace levels from day 86 to 161 following the removal of typically more stable dimethyl naphthalenes and methyl phenanthrenes. The relative susceptibility to biodegradation of different di- tri- and tetramethylnaphthalene isomers also showed several features distinct from previous reports. The unique biodegradation behaviour of Barrow Is. soil likely reflects difference in microbial functioning with physiochemical variation in the environment. Correlation of molecular parameters, reduction rates of selected alkyl naphthalene isomers and CO2 respiration values with a delayed (61 d) oil-treated soil identified a slowing of biodegradation with microcosm incubation; a reduced function or population of incubated soil flora might also influence the biodegradation patterns observed.
Resumo:
The eradication of BVD in the UK is technically possible but appears to be socially untenable. The following study explored farmer attitudes to BVD control schemes in relation to advice networks and information sharing, shared aims and goals, motivation and benefits of membership, notions of BVD as a priority disease and attitudes toward regulation. Two concepts from the organisational management literature framed the study: citizenship behaviour where actions of individuals support the collective good (but are not explicitly recognised as such) and peer to peer monitoring (where individuals evaluate other’s behaviour). Farmers from two BVD control schemes in the UK participated in the study: Orkney Livestock Association BVD Eradication Scheme and Norfolk and Suffolk Cattle Breeders Association BVD Eradication Scheme. In total 162 farmers participated in the research (109 in-scheme and 53 out of scheme). The findings revealed that group helping and information sharing among scheme members was low with a positive BVD status subject to social censure. Peer monitoring in the form of gossip with regard to the animal health status of other farms was high. Interestingly, farmers across both schemes supported greater regulation with regard to animal health, largely due to the mistrust of fellow farmers following voluntary disease control measures. While group cohesiveness varied across the two schemes, without continued financial inducements, longer-term sustainability is questionable
Resumo:
The apoplast is the arena in which endophytic pathogens such as Pseudomonas syringae grow and interact with plant cells. Using metabolomic and ion analysis techniques, this study shows how the composition of Phaseolus vulgaris leaf apoplastic fluid changes during the first six hours of compatible and incompatible interactions with two strains of Pseudomonas syringae pv. phaseolicola (Pph) that differ in the presence of the genomic island PPHGI-1. Leaf inoculation with the avirulent island-carrying strain Pph 1302A elicited effector-triggered immunity (ETI) and resulted in specific changes in apoplast composition, including increases in conductivity, pH, citrate, γ-aminobutyrate (GABA) and K+, that are linked to the onset of plant defence responses. Other apoplastic changes, including increases in Ca2+, Fe2/3+ Mg2+, sucrose, β-cyanoalanine and several amino acids, occurred to a relatively similar extent in interactions with both Pph 1302A and the virulent, island-less strain Pph RJ3. Metabolic footprinting experiments established that Pph preferentially metabolizes malate, glucose and glutamate, but excludes certain other abundant apoplastic metabolites, including citrate and GABA, until preferred metabolites are depleted. These results demonstrate that Pph is well-adapted to the leaf apoplast metabolic environment and that loss of PPHGI-1 enables Pph to avoid changes in apoplast composition linked to plant defences.
Resumo:
This study investigated the effects of transporting animals from the experimental room to the animal facility in between experimental sessions, a procedure routinely employed in experimental research, on long-term social recognition memory. By using the intruder-resident paradigm, independent groups of Wistar rats exposed to a 2-h encounter with an adult intruder were transported from the experimental room to the animal facility either 0.5 or 6h after the encounter. The following day, residents were exposed to a second encounter with either the same or a different (unfamiliar) intruder. Resident`s social and non-social behaviors were carefully scored and subjected to Principal Component Analysis, thus allowing to parcel out variance and relatedness among these behaviors. Resident rats transported 6h after the first encounter exhibited reduced amount of social investigation towards familiar intruders, but an increase of social investigation when exposed to a different intruder as compared to the first encounter. These effects revealed a consistent long-lasting (24h) social recognition memory in rats. In contrast, resident rats transported 0.5 h after the first encounter did not exhibit social recognition memory. These results indicate that this common, little-noted, laboratory procedure disturbs long-term social recognition memory. (C) 2011 Elsevier B.V. All rights reserved.