965 resultados para Plant resistande to insects
Resumo:
Cecropia pachystachya is a plant native to the states of Mato Grosso and São Paulo, usually found in rubber tree plantations. The goals of this study were to verify: a) whether the presence of C. pachystachya in rubber tree plantations influences the occurrence of mites in rubber trees; b) whether it can be used as a reservoir of predaceous mites; c) whether it serves as an alternative host for Leptopharsa heveae during the natural senescence of rubber trees. This study was conducted in two rubber tree plantations in São José do Rio Preto, in the state of São Paulo, Brazil. One of them had numerous naturally growing individuals of C. pachystachya, while the other was free of spontaneous plants. We registered high richness of predaceous mites on C. pachystachya, but only 37.5% of them were found on rubber trees, which reveals low displacement rate of mites between the plants. Among the species that were common to both plants, only the predaceous Zetzellia agistzellia and the phytophagous mites Allonychus brasiliensis and Eutetranychus banksi were influenced by the presence of C. pachystachya. The incidence of L. heveae did not differ between the plantations under study and, moreover, C. pachystachya was not used as an alternative host by this insect, since no individuals were registered on its leaves during the natural senescence of rubber trees.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Entomologia Agrícola) - FCAV
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Drought is one of the main environmental constraints that can reduce plant yield. Nitric oxide (NO) is a signal molecule involved in plant responses to several environmental stresses. The objective of this study was to investigate the cytoprotective effect of a single foliar application of 0, 1, 10 or 100 µM of the NO donor sodium nitroprusside (SNP) in sunflower plants under water stress. Water stressed plants treated with 1μM SNP showed an increase in the relative water content compared with 0 μM SNP. Drought reduced the shoot dry weight but SNP applications did not result in alleviation of drought effects. Neither drought nor water stress plus SNP applications altered the content of photosynthetic pigments. Stomatal conductance was reduced by drought and this reduction was accompanied by a significant reduction in intercellular CO2 concentration and photosynthesis. Treatment with SNP did not reverse the effect of drought on the gas exchange characteristics. Drought increased the level of malondialdehyde (MDA) and proline and reduced pirogalol peroxidase (PG-POD) activity, but did not affect the activity of superoxide dismutase (SOD). When the water stressed plants were treated with 10 μM SNP, the activity of PG-POD and the content of proline were increased and the level of MDA was decreased. The results show that the adverse effects of water stress on sunflower plants are dependent on the external NO concentration. The action of NO may be explained by its ability to increase the levels of antioxidant compounds and the activity of ROS-scavenging enzymes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Horticultura) - FCA
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
This work aimed to evaluate the effectiveness of fluxofenim used for seed treatment as safener in wheat, Ônix cultivar, treated with the herbicide S-metolachlor applied in pre-emergence. The study was divided in two steps. The first step consisted of an evaluation of fluxofenim’s safener potential for the reduction of visual symptoms of S-metolachlor injury in the field, and the treatments were S-metolachlor at 1,440 and 2,880 mL i.a. ha-1 and fluxofenim at 0, and 40 mL per 100 kg of seeds, and a control without herbicide. The second step was to evaluate glutathione S-transferase activity (GST). Herbicide phytotoxity was measured by way of visual symptoms at 3, 7, 15, and 30 days after emergence (DAE), dry matter from roots and leaves at 10 DAE. For the determination of GST activity, the canopy of plants was collected at 10 DAE and 15 days after treatment application. The wheat presented low tolerance to S-metolachlor at both rates, and fluxofenim increased S-metolachlor selectivity to wheat but not sufficiently, reducing plant population to a nonacceptable level. Gluthationa S-transferase activity for wheat increased when seeds treated with fluxofenim were submitted to S-metolachlor at 1,440 mL a.i. ha-1.
Resumo:
The nutritional requirements of crops, in general, becomes more intense with the beginning of the reproductive phase, being more critical at the time of seed formation, when considerable amounts of nutrients are they translocation, this requirement should be increased to the fact that nutrients are essential to training and development of new bodies of booking. This study aimed to evaluate the agronomic efficiency of foliar application of zinc (zinc oxide Zn 700 g L-1 ) in bean plant, compared to leaf application of zinc sulphate (ZnSO4) and control (without application of Zn). The experiment was installed in the Faculty of Agricultural Sciences - UNESP / Campus de Botucatu-SP. Was placed in containers with a capacity of 20L of soil and leaf applications encompassing four schemes and two of rain, with 5 replicates per treatment, a total of 40 vessels. The results for the factorial design did not show in general, significantly different answers when evaluated on the simulation of rain or the lack of simulation. The treatment (700g L-1 of ZnO) has demonstrated agronomic efficiency as its foliar application, with results equal or exceed the application of ZnSO4 and control when applied at the same dose of Zn.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)