1000 resultados para Photo novel
Resumo:
Purpose: To assess the phenotype of patients in a large 3 generation Swiss family with X-linked retinitis pigmentosa (XLRP) due to a novel nonsense mutation Glu20stop in RP2 gene and to correlate with the genotype. Methods: 6 affected patients (1 male, 5 females, age range: 23 - 73 years) were assessed with a complete ophthalmologic examination. All had fundus autofluorescence images, standardised electroretinography, Goldmann visual fields and Optical Coherence Tomography. In addition, medical records of 2 affected male patients were reviewed. Blood sample was taken for molecular analysis. Results: The male patients were severely affected at a young age with early macular involvement. The youngest 23 y old male had also high myopia and vision of less than 0.05 according to Snellen EDTRS chart bilaterally. All 5 female carriers had some degree of rod-cone dystrophy, but no macular involvement. The visual acuity was 1.0 in the younger carriers, while the 73 years old had VA of 0.5. Two females had mild myopia (range -0.75 to -2) and one had anisometropia of 3.5D, with the more severely affected eye being myopic. Three out of 5 female carriers had optic nerve drusen. Conclusions: We report a novel Glu20stop mutation in RP2 gene, which is a rare cause of XLRP. Our description of severe phenotype in male patients with high myopia and early macular atrophy confirms previous reports. Unlike previous reports, all our female carriers had RP, but not macular involvement or high myopia. The identifiable phenotype for RP2-XLRP aids in clinical diagnosis and targeted genetic screening.
Resumo:
We describe the preparation of the modified chelator aminooxyacetyl-ferrioxamine, and the replacement of its iron atom by 67Ga at high specific activity. The aminooxy function of this compound was allowed to react with the aldehyde groups generated by the periodate oxidation of the oligosaccharide of a mouse IgG1 monoclonal antibody (MAb) directed against carcino-embryonic antigen (CEA). The use of the aminooxy group allowed a stable bond to be formed between the chelon and the antibody with no need for reduction. Iron was removed from the ferrioxamine moiety and replaced by 67Ga either before or after conjugation of the chelon to the antibody. In either case the labelled antibody was injected into nude mice bearing a human colon carcinoma having the appropriate antigenicity. Unoxidized antibody, labelled with 125I by conventional methods, was co-injected as an internal control. Additional control experiments were carried out with a non-immune IgG using the same 67Ga-labelled modified chelon as above. The in vivo distribution of the modified antibodies was evaluated at various times between 24 and 96 hr after injection. The methods used were gamma-camera imaging and, more quantitatively, gamma-counting of the various organs after dissection. Interestingly, with the metal-chelon-labelled antibody, the intensity and specificity of tumor labelling was comparable and in some cases superior to the results obtained with radio-iodinated antibody. In particular, there was almost no increase in liver and spleen uptake of radioactive metal relative to radio-iodine, contrary to what has been observed with most antibodies labelled with 111In after conjugation with DTPA.
Resumo:
Human and chimpanzee genomes are 98.8% identical within comparable sequences. However, they differ structurally in nine pericentric inversions, one fusion that originated human chromosome 2, and content and localization of heterochromatin and lineage-specific segmental duplications. The possible functional consequences of these cytogenetic and structural differences are not fully understood and their possible involvement in speciation remains unclear. We show that subtelomeric regions-regions that have a species-specific organization, are more divergent in sequence, and are enriched in genes and recombination hotspots-are significantly enriched for species-specific histone modifications that decorate transcription start sites in different tissues in both human and chimpanzee. The human lineage-specific chromosome 2 fusion point and ancestral centromere locus as well as chromosome 1 and 18 pericentric inversion breakpoints showed enrichment of human-specific H3K4me3 peaks in the prefrontal cortex. Our results reveal an association between plastic regions and potential novel regulatory elements.
Resumo:
Estimating the time since the last discharge of firearms and/or spent cartridges may be a useful piece of information in forensic firearm-related cases. The current approach consists of studying the diffusion of selected volatile organic compounds (such as naphthalene) released during the shooting using solid phase micro-extraction (SPME). However, this technique works poorly on handgun car-tridges because the extracted quantities quickly fall below the limit of detection. In order to find more effective solutions and further investigate the aging of organic gunshot residue after the discharge of handgun cartridges, an extensive study was carried out in this work using a novel approach based on high capacity headspace sorptive extraction (HSSE). By adopting this technique, for the first time 51 gunshot residue (GSR) volatile organic compounds could be simultaneously detected from fired handgun cartridge cases. Application to aged specimens showed that many of those compounds presented significant and complementary aging profiles. Compound-to-compound ratios were also tested and proved to be beneficial both in reducing the variability of the aging curves and in enlarging the time window useful in a forensic casework perspective. The obtained results were thus particularly promising for the development of a new complete forensic dating methodology.
Resumo:
Arenaviruses are a large and diverse family of viruses that merit significant attention as causative agents of severe hemorrhagic fevers in humans. Lassa virus (LASV) in Africa and the South American hemorrhagic fever viruses Junin (JUNV), Machupo (MACV), and Guanarito (GTOV) have emerged as important human pathogens and represent serious public health problems in their respective endemic areas. A hallmark of fatal arenaviruses hemorrhagic fevers is a marked immunosuppression of the infected patients. Antigen presenting cells (APCs) such as macrophages and in particular dendritic cells (DCs) are early and preferred targets of arenaviruses infection. Instead of being recognized and presented as foreign antigens by DCs, arenaviruses subvert the normal mechanisms of pathogen recognition, invade DCs and establish a productive infection. Viral replication perturbs the DCs' ability to present antigens and to activate T and B cells, contributing to the marked virus-induced immunosuppression observed in fatal disease. Considering their crucial role in the development of an anti-viral immune response, the mechanisms by which arenaviruses, and in particular LASV, invade DCs are of particular interest. The C-type lectin DC-specific Intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) was recently identified as a potential entry receptor for LASV. The first project of my thesis focused therefore on the investigation of the role of DC-SIGN in LASV entry into primary human DCs. My data revealed that DC-SIGN serves as an attachment factor for LASV on human DCs and can facilitate capture of free virus and subsequent cell entry. However, in contrast to other emerging viruses, of the phlebovirus family, I found that DC-SIGN does likely not function as an authentic entry receptor for LASV. Moreover, I was able to show that LASV enters DCs via an unusually slow pathway that depends on actin, but is independent of clathrin and dynamin. Considering the lack of effective treatments and the limited public health infrastructure in endemic regions, the development of protective vaccines against arenaviruses is an urgent need. To address this issue, the second project of my thesis aimed at the development of a novel recombinant arenavirus vaccine based on a nanoparticle (NPs) platform and its evaluation in a small animal model. During the first phase of the project I designed, produced, and characterized suitable vaccine antigens. In the second phase of the project, I generated antigen-conjugated NPs, developed vaccine formulations, and tested the NPs for their ability to elicit anti-viral T cell responses as well as anti-viral antibodies. I demonstrated that the NPs platform is able to activate both cellular and humoral branches of the adaptive anti-viral immunity, providing proof-of-principle. In sum, my first project will allow, in a long term perspective, a better understanding of the viral pathogenesis and contribute to the development of novel antiviral strategies. The second project will expectidly offer a new treatment option against arenaviruses.
Resumo:
Metabolic engineering of plants allows the possibility of using crops for the synthesis of novel polymers having useful material properties. Strong and flexible protein-based polymers, which are based on the structure of silk and elastin have been synthesized in transgenic plants. A wide range of polyhydroxyalkanoates having properties ranging from stiff plastics to soft elastomers and glues have been synthesized in various compartments of plants, such as the cytoplasm, plastid and peroxisome. These plant biomaterials could replace, in part, the synthetic plastics, fibers and elastomers produced from petroleum, thus offering the advantage of renewability, sustainability and biodegradability.
Resumo:
The RsmA family of RNA-binding proteins are global post-transcriptional regulators that mediate extensive changes in gene expression in bacteria. They bind to, and affect the translation rate of target mRNAs, a function that is further modulated by one or more, small, untranslated competitive regulatory RNAs. To gain new insights into the nature of this protein/RNA interaction, we used X-ray crystallography to solve the structure of the Yersinia enterocolitica RsmA homologue. RsmA consists of a dimeric beta barrel from which two alpha helices are projected. From structure-based alignments of the RsmA protein family from diverse bacteria, we identified key amino acid residues likely to be involved in RNA-binding. Site-specific mutagenesis revealed that arginine at position 44, located at the N terminus of the alpha helix is essential for biological activity in vivo and RNA-binding in vitro. Mutation of this site affects swarming motility, exoenzyme and secondary metabolite production in the human pathogen Pseudomonas aeruginosa, carbon metabolism in Escherichia coli, and hydrogen cyanide production in the plant beneficial strain Pseudomonas fluorescens CHA0. R44A mutants are also unable to interact with the small untranslated RNA, RsmZ. Thus, although possessing a motif similar to the KH domain of some eukaryotic RNA-binding proteins, RsmA differs substantially and incorporates a novel class of RNA-binding site.
Resumo:
Circulating levels of adiponectin, a hormone produced predominantly by adipocytes, are highly heritable and are inversely associated with type 2 diabetes mellitus (T2D) and other metabolic traits. We conducted a meta-analysis of genome-wide association studies in 39,883 individuals of European ancestry to identify genes associated with metabolic disease. We identified 8 novel loci associated with adiponectin levels and confirmed 2 previously reported loci (P = 4.5×10(-8)-1.2×10(-43)). Using a novel method to combine data across ethnicities (N = 4,232 African Americans, N = 1,776 Asians, and N = 29,347 Europeans), we identified two additional novel loci. Expression analyses of 436 human adipocyte samples revealed that mRNA levels of 18 genes at candidate regions were associated with adiponectin concentrations after accounting for multiple testing (p<3×10(-4)). We next developed a multi-SNP genotypic risk score to test the association of adiponectin decreasing risk alleles on metabolic traits and diseases using consortia-level meta-analytic data. This risk score was associated with increased risk of T2D (p = 4.3×10(-3), n = 22,044), increased triglycerides (p = 2.6×10(-14), n = 93,440), increased waist-to-hip ratio (p = 1.8×10(-5), n = 77,167), increased glucose two hours post oral glucose tolerance testing (p = 4.4×10(-3), n = 15,234), increased fasting insulin (p = 0.015, n = 48,238), but with lower in HDL-cholesterol concentrations (p = 4.5×10(-13), n = 96,748) and decreased BMI (p = 1.4×10(-4), n = 121,335). These findings identify novel genetic determinants of adiponectin levels, which, taken together, influence risk of T2D and markers of insulin resistance.
Resumo:
BACKGROUND: To report the clinical, histopathological and immunohistochemical findings of two novel mutations within the TGFBI gene. METHODS: The genotype of 41 affected members of 16 families and nine sporadic cases was investigated by direct sequencing of the TGFBI gene. Clinical, histological and immunohistochemical characteristics of corneal opacification were reported and compared with the coding region changes in the TGFBI gene. RESULTS: A novel mutation Leu509Pro was detected in one family with a geographic pattern-like clinical phenotype. Histopathologically we found amyloid together with non-amyloid deposits and immunohistochemical staining of Keratoepithelin (KE) KE2 and KE15 antibodies. In two families and one sporadic case the novel mutation Gly623Arg with a late-onset, map-like corneal dystrophy was identified. Here amyloid and immunohistochemical staining of only KE2 antibodies occurred. Further, five already known mutations are reported: Arg124Cys Arg555Trp Arg124His His626Arg, Ala546Asp in 13 families and five sporadic cases of German origin. The underlying gene defect within the TBFBI gene was not identified in any of the four probands with Thiel-Behnke corneal dystrophy. CONCLUSIONS: The two novel mutations within the TGFBI gene add another two phenotypes with atypical immunohistochemical and histopathological features to those so far reported.
Resumo:
The cuticle is a physical barrier that prevents water loss and protects against irradiation, xenobiotics and pathogens. This classic textbook statement has recently been revisited and several observations were made showing that this dogma falls short of being universally true. Both transgenic Arabidopsis thaliana lines expressing cell wall-targeted fungal cutinase (so-called CUTE plants) or lipase as well as several A. thaliana mutants with altered cuticular structure remained free of symptoms after an inoculation with Botrytis cinerea. The alterations in cuticular structure lead to the release of fungitoxic substances and changes in gene expression that form a multifactorial defence response. Several models to explain this syndrome are discussed.
Resumo:
ABSTRACT Malaria is a major worldwide public health problem, with transmission occurring throughout Africa, Asia, Oceania and Latin America. Over two billion people live in malarious areas of the world and it is estimated that 300-500 million cases and 1.5-2.7 million deaths occur annually. The increase in multi-drug resistant parasites and insecticide-resistant vectors has made the development of malaria vaccine a public health priority. The published genome offers tremendous opportunity for the identification of new antigens that can befast-tracked for vaccine development. We identified potential protein antigens present on the surface of asexual malaria blood stages through bioinformatics and published transcriptome and proteorné analysis. Amongst the proteins identified, we selected those that contain predicted a-helical coiled-coil regions, which are generally short and structurally stable as isolated fragments. Peptides were synthesized and used to immunize mice. Most peptides tested were immunogenic as demonstrated in ELISA assays, and induced antibodies of varying titres. In immunofluorescence assays, anti-sera from immunized mice reacted with native proteins expressed at different intraerythrocytic developmental stages of the parasite's cycle. In parallel in vitro ADCI functional studies, human antibodies affinity purified on some of these peptides inhibited parasite growth in association with monocytes in magnitudes similar to that seen in semiimmune African adults. Siudies using human immune sera taken from different malaria endemic regions, demonstrated that majority of peptides were recognized at high prevalence. 73 peptides were next tested in longitudinal studies in two cohorts separated in space and time in coastal Kenya. In these longitudinal analyses, antibody responses to peptides were sequentially examined in two cohorts of children at risk of clinical malaria in order to characterize the level of peptide recognition by age, and the role of anti-peptide antibodies in protection from clinical malaria. Ten peptides were associated ?with a significantly reduced odds ratio for an episode of clinical malaria in the first cohort of children and two of these peptides (LR146 and ÁS202.11) were associated with a significantly reduced odds ratio in both cohorts. This study has identified proteins PFB0145c and MAL6P1.37 among others as likely targets of protective antibodies. Our findings support further studies to systematically assess immunogenicity of peptides of interest in order to establish clear criteria for optimal design of potential vaccine constructs to be tested in clinical trials. RESUME La malaria est un problème de santé publique mondial principalement en Afrique, en Asie, en Océanie et en Amérique latine. Plus de 2 milliards de personnes vivent dans des régions endémiques et le nombre de cas par année est estimé entre 300 et 500 millions. 1.5 à 2.7 millions de décès surviennent annuellement dans ces zones. L'augmentation de la résistance aux médicaments et aux insecticides fait du développement d'un vaccin une priorité. Le séquençage complet du génome du parasite offre l'opportunité d'identifier de nouveaux antigènes qui peuvent rapidement mener au développement d'un vaccin. Des protéines antigéniques potentielles présentes à la surface des globules rouges infectés ont été identifiées par bioinformatique et par l'analyse du protéome et du transcriptome. Nous avons sélectionné, parmi ces protéines, celles contenant des motifs dits "a helical coiled-coil" qui sont généralement courts et structurellement stables. Ces régions ont été obtenues par synthèse peptidique et utilisées pour immuniser des souris. La plupart des peptides testés sont immunogéniques et induisent un titre variable d'anticorps déterminé par ELISA. Les résultats de tests d'immunofluorescence indiquent que les sera produits chez la souris reconnaissent les protéines natives exprimées aux différents stades de développement du parasite. En parallèle, des études d'ADCI in vitro montrent qué des anticorps humains purifiés à partir de ces peptides associés à des monocytes inhibent la croissance du parasite aussi bien que celle observée chez des adultes africains protégés. Des études d'antigénicité utilisant des sera de personnes protégées de différents âges vivant dans des régions endémiques montrent que la majorité des peptides sont reconnus avec une haute prévalence. 73 peptides ont été testés dans une étude longitudinale avec 2 cohortes de la côte du Kenya. Ces 2 groupes viennent de zones bien distinctes et les prélèvements n'ont pas été effectués pendant la même période. Dans cette étude, la réponse anticorps contre les peptides synthétiques a été testée dans les 2 cohortes d'enfants à risque de développer un épisode de malaria afin de caractériser le niveau de reconnaissance des peptides en fonction de l'âge et de déterminer le rôle des anticorps anti-peptides dans la protection contre la malaria. Parmi ces peptides, 10 sont associés à une réduction significative des risques de développer un épisode de malaria dans la première cohorte alors qu'un seul (LR146 et AS202.11) l'est dans les 2 cohortes. Cette étude a identifié, parmi d'autres, les protéines PFB0145c et MAL6P1.37 comme pouvant être la cible d'anticorps. Ces résultats sont en faveur de futures études qui évalueraient systématiquement l'immunogénicité des peptides d'intérêt dans le but d'établir des critères de sélection clairs pour le développement d'un vaccin. Résumé pour un large public La malaria est un problème de santé publique mondial principalement en Afrique, en Asie, en Océanie et en Amérique latine. Plus de 2 milliards de personnes vivent dans des régions endémiques et le nombre de cas par année est estimé entre 300 et 500 millions. 1.5 à 2.7 millions de décès surviennent annuellement dans ces zones. La résistance aux médicaments et aux insecticides augmente de plus en plus d'où la nécessité de développer un vaccin. Le séquençage complet du génome (ensemble des gènes) de P. falciparum a conduit au développement de nouvelles .études à large échelle dans le domaine des protéines du parasite (protéome) ; dans l'utilisation d'algorithmes, de techniques informatiques et statistiques pour l'analyse de données biologiques (bioinformatique) et dans les technologies de transcription et de profiles d'expression (transcriptome). Nous avons identifié, en utilisant les outils ci-dessus, des nouvelles protéines antigéniques qui sont présentes au stade sanguin de la malaria. Nous avons sélectionné, parmi ces protéines, celles contenant un motif dit "a-helical coiled-coil" qui sont des domaines impliqués dans un large éventail de fonctions biologiques. Des peptides représentant ces régions structurellement stables ont été synthétisés et utilisés pour immuniser des souris. La plupart des peptides testés sont immunogéniques et induisent un titre variable d'anticorps déterminé par ELISA. Les résultats de tests d'immunofluorescence indiquent que plusieurs sera de souris immunisées avec ces peptides reconnaissent les protéines natives exprimées à la surface des globules rouges infectés. En parallèle, des études d'ADCI in vitro montrent que des anticorps humains purifiés à partir de ces peptides en présence de monocytes inhibent la croissance du parasite de manière similaire à celle observée chez des adultes africains protégés. Des études d'antigénicité utilisant des sera de personnes immunes de différents âges (adultes et enfants) vivant dans des régions endémiques montrent que la majorité des peptides sont reconnus avec une haute prévalence. 73 peptides ont été testés dans des études épidémiologiques dans 2 villages côtiers du Kenya Ces 2 groupes vivent dans des zones bien distinctes et les prélèvements n'ont pas été effectués pendant la même période. Dans ces études, la réponse anticorps dirigée contre les peptides synthétiques a été testée en utilisant 467 échantillons sanguins d'enfants à risque de développer un épisode de malaria afin de caractériser le niveau de reconnaissance des peptides en fonction de l'âge et de déterminer le rôle des anticorps anti-peptides dans la protection contre la malaria cérébrale. Parmi ces peptides, 10 sont associés à une protection contre un épisode de malaria dans le premier village alors qu'un seul l'est dans les 2 villages. Ces résultats sont en faveur de futures études qui évalueraient systématiquement l'immunogénicité des peptides intéressants dans le but d'établir des critères de sélection clairs pour le développement d'un vaccin.
Resumo:
Human organism is interpenetrated by the world of microorganisms, from the conception until the death. This interpenetration involves different levels of interactions between the partners including trophic exchanges, bi-directional cell signaling and gene activation, besides genetic and epigenetic phenomena, and tends towards mutual adaptation and coevolution. Since these processes are critical for the survival of individuals and species, they rely on the existence of a complex organization of adaptive systems aiming at two apparently conflicting purposes: the maintenance of the internal coherence of each partner, and a mutually advantageous coexistence and progressive adaptation between them. Humans possess three adaptive systems: the nervous, the endocrine and the immune system, each internally organized into subsystems functionally connected by intraconnections, to maintain the internal coherence of the system. The three adaptive systems aim at the maintenance of the internal coherence of the organism and are functionally linked by interconnections, in such way that what happens to one is immediately sensed by the others. The different communities of infectious agents that live within the organism are also organized into functional networks. The members of each community are linked by intraconnections, represented by the mutual trophic, metabolic and other influences, while the different infectious communities affect each other through interconnections. Furthermore, by means of its adaptive systems, the organism influences and is influenced by the microbial communities through the existence of transconnections. It is proposed that these highly complex and dynamic networks, involving gene exchange and epigenetic phenomena, represent major coevolutionary forces for humans and microorganisms.
Resumo:
Proline- and acid-rich (PAR) basic region leucine zipper (bZIP) proteins thyrotroph embryonic factor (TEF), D-site-binding protein (DBP), and hepatic leukemia factor have been involved in neurotransmitter homeostasis and amino acid metabolism. Here we demonstrate a novel role for these proteins in the transcriptional control of a BH3-only gene. PAR bZIP proteins are able to transactivate the promoter of bcl-gS. This promoter is particularly responsive to TEF activation and is silenced by NFIL3, a repressor that shares the consensus binding site with PAR bZIP proteins. Consistently, transfection of TEF induces the expression of endogenous bcl-gS in cancer cells, and this induction is independent of p53. A naturally occurring variant of DBP (tDBP), lacking the transactivation domain, has been identified and shown to impede the formation of active TEF dimers in a competitive manner and to reduce the TEF-dependent induction of bcl-gS. Of note, treatment of cancer cells with etoposide induces TEF activation and promotes the expression of bcl-gS. Furthermore, blockade of bcl-gS or TEF expression by a small interfering RNA strategy or transfection with tDBP significantly reduces the etoposide-mediated apoptotic cell death. These findings represent the first described role for PAR bZIP proteins in the regulation of a gene involved in the execution of apoptosis.
Resumo:
At least 10% of glioblastoma relapses occur at distant and even contralateral locations. This disseminated growth limits surgical intervention and contributes to neurological morbidity. Preclinical data pointed toward a role for temozolomide (TMZ) in reducing radiotherapy-induced glioma cell invasiveness. Our objective was to develop and validate a new analysis tool of MRI data to examine the clinical recurrence pattern of glioblastomas. MRIcro software was used to map the location and extent of initial preoperative and recurrent tumors on MRI of 63 patients in the European Organisation for Research and Treatment of Cancer (EORTC) 26981/22981/National Cancer Institute of Canada (NCIC) CE.3 study into the same stereotaxic space. This allowed us to examine changes of site and distance between the initial and the recurrent tumor on the group level. Thirty of the 63 patients were treated using radiotherapy, while the other patients completed a radiotherapy-plus-TMZ treatment. Baseline characteristics (median age, KPS) and outcome data (progression-free survival, overall survival) of the patients included in this analysis resemble those of the general study cohort. The patient groups did not differ in the promoter methylation status of methyl guanine methyltransferase (MGMT). Overall frequency of distant recurrences was 20%. Analysis of recurrence patterns revealed no difference between the groups in the size of the recurrent tumor or in the differential effect on the distance of the recurrences from the preoperative tumor location. The data show the feasibility of groupwise recurrence pattern analysis. An effect of TMZ treatment on the recurrence pattern in the EORTC 26981/22981/NCIC CE.3 study could not be demonstrated.