915 resultados para Phosphorus in the body
Resumo:
This paper addresses the regulatory issues arising in developing a new regulatory model for the New South Wales Coal Industry. As such, it identifies the relevant literature on this subject, the options available for reform, and the experience of Australian and key international bodies responsible for the development of regulatory standards in this area. In particular it: Identifies the main shortcomings in the existing regulatory approach; Identifies the potential roles/main strengths and weaknesses of different types of standards (eg specification, performance, process and systems-based rules) and potential “best practice’ combinations of standards; Examines the appropriateness of the current regulatory regime whereby the general OHS legislation (including the general duty provisions) applies to mining in addition to the large body of regulation which is specific to mining; Identifies the importance of, and possible means of addressing, issues of worker participation within the coal mining industry; Draws on the literature on what motivates companies and individuals for the purpose of recommending key provisions for inclusion in new legislation to provide appropriate personal and organisational incentives; Draws on the literature on major hazards facilities to suggest the appropriate roles for OHS management systems and safety reports or comparable approaches (eg mine safety management plans); Draws on the United Kingdom (UK) and United States of America (USA) experience of coal mine safety and its regulation for comparative purposes, and for insights as to what sort of regulation most effectively reduces work related injury and disease in coal mining; Examines the relevant roles of International Labour Organisation (ILO) Conventions; Examines the extent to which different regulatory regimes would be appropriate to open cut and underground coal mining; and Examines options for reform. This paper is focussed specifically on the issues identified above.
Resumo:
As Business Process Management (BPM) is evolving and organisations are becoming more process oriented, the need for Expertise in BPM amongst practitioners has increased. Proactively managing Expertise in BPM is essential to unlock the potential of BPM as a management paradigm and competitive advantage. Whilst great attention is being paid by the BPM community to the technological aspects of BPM, relatively little research or work has been done concerning the expertise aspect of BPM. There is a substantial body of knowledge on expertise itself, however there is no common framework in existence at the time of writing, describing the fundamental attributes characterising Expertise in the illustrative context of BPM. There are direct implications of the understanding and characterisation of Expertise in the context of BPM as a key strategic component and success factor of BPM itself, as well as for those involved in BPM. Expertise in the context of BPM needs to be characterised to understand it, and be able to proactively manage it. Given the relative infancy of research into Expertise in the context of BPM, an exploration of the relevance and importance of Expertise in the context of BPM was considered essential, to ensure the study itself was of value to the BPM field. The aims of this research are firstly to address the two research questions 'why is expertise important and relevant in the context of BPM?', and 'how can Expertise in the context of BPM be characterised?', and secondly, the development of a comprehensive and validated A-priori model characterising Expertise in the illustrative context of BPM. The study is theory-guided. It has been undertaken via an extensive literature review across relevant literature domains, and a revelatory case study utilising several methods: informal discussions, an open-ended survey, and participant observation. An a-priori model was then developed which comprised of several Constructs and Sub-constructs, and several overall aspects of Expertise in BPM. This was followed by the conduct of interviews in the validation phase of the revelatory case study. The primary contributions of this study are to the fields of expertise, BPM and research. Contributions to the field of expertise include a comprehensive review of expertise literature in general and synthesised critique on expertise research, characterisation of expertise in an illustrative context as a system, and a comprehensive narrative of the dynamics and interrelationships of the core attributes characterising expertise. Contributions to the field of BPM include firstly, the establishment of the importance of understanding Expertise in the context of BPM, including a comprehensive overview of the role the relevance and importance of Expertise in the context of BPM, through explanation of the effect of Expertise in BPM. Secondly, a model characterising Expertise in the context of BPM, which can be used by BPM practitioners to clearly articulate and illuminate the state of Expertise in BPM in organisations. Contributions to the field of research include an extended view of Systems Theory developed, reflecting the importance of the system context in systems thinking, and a narrative on ontological innovation through the positioning of ontology as a meta-model of Expertise in the context of BPM.
Resumo:
This thesis examined the extent to which individual differences, as conceptualised by the revised Reinforcement Sensitivity Theory, influenced young drivers' information processing and subsequent acceptance of anti-speeding messages. Using a multi-method approach, the findings highlighted the utility of combining objective measures (a cognitive response time task and electroencephalography) with self-report measures to assess message processing and message acceptance, respectively. This body of research indicated that responses to anti-speeding messages may differ depending on an individual's personality disposition. Overall, the research provided further insight into the development of message strategies to target high risk drivers.
Resumo:
Brain size in vertebrates varies principally with body size. Although many studies have examined the variation of brain size in birds, there is little information on Palaeognaths, which include the ratite lineage of kiwi, emu, ostrich and extinct moa, as well as the tinamous. Therefore, we set out to determine to what extent the evolution of brain size in Palaeognaths parallels that of other birds, i. e., Neognaths, by analyzing the variation in the relative sizes of the brain and cerebral hemispheres of several species of ratites and tinamous. Our results indicate that the Palaeognaths possess relatively smaller brains and cerebral hemispheres than the Neognaths, with the exception of the kiwi radiation (Apteryx spp.). The external morphology and relatively large size of the brain of Apteryx, as well as the relatively large size of its telencephalon, contrast with other Palaeognaths, including two species of historically sympatric moa, suggesting that unique selective pressures towards increasing brain size accompanied the evolution of kiwi. Indeed, the size of the cerebral hemispheres with respect to total brain size of kiwi is rivaled only by a handful of parrots and songbirds, despite a lack of evidence of any advanced behavioral/ cognitive abilities such as those reported for parrots and crows. In addition, the enlargement in brain and telencephalon size of the kiwi occurs despite the fact that this is a precocial bird. These findings form an exception to, and hence challenge, the current rules that govern changes in relative brain size in birds. Copyright (c) 2007 S. Karger AG, Basel.
Resumo:
Background In vision, there is a trade-off between sensitivity and resolution, and any eye which maximises information gain at low light levels needs to be large. This imposes exacting constraints upon vision in nocturnal flying birds. Eyes are essentially heavy, fluid-filled chambers, and in flying birds their increased size is countered by selection for both reduced body mass and the distribution of mass towards the body core. Freed from these mass constraints, it would be predicted that in flightless birds nocturnality should favour the evolution of large eyes and reliance upon visual cues for the guidance of activity. Methodology/Principal Findings We show that in Kiwi (Apterygidae), flightlessness and nocturnality have, in fact, resulted in the opposite outcome. Kiwi show minimal reliance upon vision indicated by eye structure, visual field topography, and brain structures, and increased reliance upon tactile and olfactory information. Conclusions/Significance This lack of reliance upon vision and increased reliance upon tactile and olfactory information in Kiwi is markedly similar to the situation in nocturnal mammals that exploit the forest floor. That Kiwi and mammals evolved to exploit these habitats quite independently provides evidence for convergent evolution in their sensory capacities that are tuned to a common set of perceptual challenges found in forest floor habitats at night and which cannot be met by the vertebrate visual system. We propose that the Kiwi visual system has undergone adaptive regressive evolution driven by the trade-off between the relatively low rate of gain of visual information that is possible at low light levels, and the metabolic costs of extracting that information.
Resumo:
Background Cancer itself can alter the metabolic and physiologic of the body's nutritional needs. As a result, some patients experience some degree of weight loss before the start of the treatment. Aim The aim of the study was to determine at which chemotherapy treatment cycle patients with cancer begin to exhibit signs and symptoms of malnutrition. Methods A prospective descriptive correlational design was used to assess the nutritional risk of 111 patients with cancer receiving chemotherapy in the ambulatory setting. The data were collected by using a nutritional screening tool. Findings The prevalence of malnutrition risk was 45% in patients undergoing the first cycle of chemotherapy. Patients who received the first three cycles of chemotherapy were 2.62 times more likely to develop malnutrition than those who received seven or more cycles. The risk of developing malnutrition varies depending on the type of cancer, the types of chemotherapy regime, the number of chemotherapy cycles, body mass index and the stage of cancer. Conclusion The study found about half of the patients had developed signs and symptoms of nutritional risk at cycle one. Hence, nutritional support may be required even before the start of chemotherapy.
Resumo:
In the last five years the Safety Institute of Australia Limited (SIA) has developed and implemented a number of strategies to gain professional recognition for the ‘generalist occupational health and safety (OHS) professional’ in Australia and internationally. Despite a considerable amount of work by the SIA aimed at gaining professional status, there does not appear to have been any published debate or reflection about how the drive for professionalism (the ‘professional project’) will contribute to the prevention of occupational disease and injury. Professionalisation has been promoted as a sign of maturity for the SIA and as an unquestionably good outcome, as it has been assumed that professionalisation will provide unmitigated benefits for workplace health and safety. The aim of this paper is to critically reflect on the processes of professionalisation (the professional project) and discuss the ways in which this project may shape the field of occupational health and safety.
Resumo:
This study arose out of the 2002 Review of the PCB Management Plan by the Scheduled Waste Management Network (SWMN) and the National Advisory Body (NAB). The Review indicated it would be beneficial to obtain some data on the levels of organochlorine pesticides (OCPs) in the Australian population. In 2002, the Environment Protection and Heritage Standing Committee (EPHSC) agreed and noted that the Australian Government Department of the Environment and Heritage (DEH) would commission a study using the same samples from the National Dioxins Program (NDP) breast milk study collected in 2002- 03. The study, however, was also broadened to include polybrominated diphenyl ethers (PBDEs).
Resumo:
Rowers have and accrue greater lumbar spine bone mineral density (BMD) associated with mechanical loading produced during rowing. The aim of this study was to estimate the mechanical loading generated at the lumbar spine (LS) that is apparently providing an osteogenic benefit. The cohort comprised 14 female rowers (average age: 19.7yrs; height: 170.9 cm, weight: 59.5 kg) and 14 female matched controls (average age: 20.9 m yrs; height: 167.5 cm; weight: 58.1 kg). BMD was assessed using the Hologic QDR 2000+ bone densitometer, indicating higher lumbar spine BMD in the rowers compared to the control subjects (1,069 +/- 0.1 vs. 1,027 +/- 0.1 g/cm2). No significant difference existed for BMD at any other site. All rowers performed a six-minute simulated race on a Concept II rowing ergometer. Mechanical loading generated at the lumbar spine during this task was assessed using a two-dimensional model of the spine, enabling the calculation of the compressive and shear forces at L4/L5. The shear force was the joint reaction force perpendicular to the spine at the L4/L5 joint. Peak compressive and shear force at the lumbar spine of the rowers were 2,694 +/- 609 (N) and 660 +/- 117 (N), respectively. Peak compressive force at the LS relative to body weight was 4.6 times body weight. The literature would suggest that forces of this magnitude, generated at the LS during maximal rowing, may be contributing to the site specific higher LS BMD found in the rowers.
Resumo:
The largest Neoarchean gold deposits in the world-class St Ives Goldfield, Western Australia, occur in an area known as the Argo-Junction region (e.g. Junction, Argo and Athena). Why this region is so well endowed with large deposits compared with other parts of the St Ives Goldfield is currently unclear, because gold deposits at St Ives are hosted by a variety of lithologic units and were formed during at least three different deformational events. This paper presents an investigation into the stratigraphic architecture and evolution of the Argo-Junction region to assess its implications for gold metallogenesis. The results show that the region's stratigraphy may be subdivided into five regionally correlatable packages: mafic lavas of the Paringa Basalt; contemporaneously resedimented feldspar-rich pyroclastic debris of the Early Black Flag Group; coarse polymictic volcanic debris of the Late Black Flag Group; thick piles of mafic lavas and sub-volcanic sills of the Athena Basalt and Condenser Dolerite; and the voluminous quartz-rich sedimentary successions of the Early Merougil Group. In the Argo-Junction region, these units have an interpreted maximum thickness of at least 7,130 m, and thus represent an unusually thick accumulation of the Neoarchean volcano-sedimentary successions. It is postulated that major basin-forming structures that were active during deposition and emplacement of the voluminous successions later acted as important conduits during mineralisation. Therefore, a correlation exists between the location of the largest gold deposits in the St Ives Goldfield and the thickest parts of the stratigraphy. Recognition of this association has important implications for camp-scale exploration.
Resumo:
Control of iron homeostasis is essential for healthy central nervous system function: iron deficiency is associated with cognitive impairment, yet iron overload is thought to promote neurodegenerative diseases. Specific genetic markers have been previously identified that influence levels of transferrin, the protein that transports iron throughout the body, in the blood and brain. Here, we discovered that transferrin levels are related to detectable differences in the macro- and microstructure of the living brain. We collected brain MRI scans from 615 healthy young adult twins and siblings, of whom 574 were also scanned with diffusion tensor imaging at 4 Tesla. Fiber integrity was assessed by using the diffusion tensor imaging-based measure of fractional anisotropy. In bivariate genetic models based on monozygotic and dizygotic twins, we discovered that partially overlapping additive genetic factors influenced transferrin levels and brain microstructure. We also examined common variants in genes associated with transferrin levels, TF and HFE, and found that a commonly carried polymorphism (H63D at rs1799945) in the hemochromatotic HFE gene was associated with white matter fiber integrity. This gene has a well documented association with iron overload. Our statistical maps reveal previously unknown influences of the same gene on brain microstructure and transferrin levels. This discovery may shed light on the neural mechanisms by which iron affects cognition, neurodevelopment, and neurodegeneration.
Resumo:
Empirical evidence in Australia and overseas has established that in many university disciplines, students begin to experience elevated levels of psychological distress in their first year of study. There is now a considerable body of empirical data that establishes that this is a significant problem for law students. Psychological distress may hamper a law student’s capacity to learn successfully, and certainly hinders their ability to thrive in the tertiary environment. We know from Self-Determination Theory (SDT), a conceptual branch of positive psychology, that supporting students’ autonomy in turn supports their well-being. This article seeks to connect the literature on law student well-being and independent learning using Self-Determination Theory (SDT) as the theoretical bridge. We argue that deliberate instruction in the development of independent learning skills in the first year curriculum is autonomy supportive. It can therefore lay the foundation for academic and personal success at university, and may be a protective factor against decline in law student psychological well-being.
Resumo:
INTRODUCTION. The intervertebral disc is the largest avascular structure in the human body, withstanding transient loads of up to nine times body weight during rigorous physical activity. The key structural elements of the disc are a gel-like nucleus pulposus surrounded by concentric lamellar rings containing criss-crossed collagen fibres. The disc also contains an elastic fiber network which has been suggested to play a structural role, but to date the relationship between the collagen and elastic fiber networks is unclear. CONCLUSION. The multimodal transmitted and reflected polarized light microscopy technique developed here allows clear differentiation between the collagen and elastic fiber networks of the intervertebral disc. The ability to image unstained specimens avoids concerns with uneven stain penetration or specificity of staining. In bovine tail discs, the elastic fiber network is intimately associated with the collagen network.
Resumo:
PURPOSE: Previous research demonstrating that specific performance outcome goals can be achieved in different ways is functionally significant for springboard divers whose performance environment can vary extensively. This body of work raises questions about the traditional approach of balking (terminating the takeoff) by elite divers aiming to perform only identical, invariant movement patterns during practice. METHOD: A 12-week training program (2 times per day; 6.5 hr per day) was implemented with 4 elite female springboard divers to encourage them to adapt movement patterns under variable takeoff conditions and complete intended dives, rather than balk. RESULTS: Intraindividual analyses revealed small increases in variability in the board-work component of each diver's pretraining and posttraining program reverse-dive takeoffs. No topological differences were observed between movement patterns of dives completed pretraining and posttraining. Differences were noted in the amount of movement variability under different training conditions (evidenced by higher normalized root mean square error indexes posttraining). An increase in the number of completed dives (from 78.91%-86.84% to 95.59%-99.29%) and a decrease in the frequency of balked takeoffs (from 13.16%-19.41% to 0.63%-4.41%) showed that the elite athletes were able to adapt their behaviors during the training program. These findings coincided with greater consistency in the divers' performance during practice as scored by qualified judges. CONCLUSION: Results suggested that on completion of training, athletes were capable of successfully adapting their movement patterns under more varied takeoff conditions to achieve greater consistency and stability of performance outcomes.
Resumo:
Molecular phylogenetic studies of homologous sequences of nucleotides often assume that the underlying evolutionary process was globally stationary, reversible, and homogeneous (SRH), and that a model of evolution with one or more site-specific and time-reversible rate matrices (e.g., the GTR rate matrix) is enough to accurately model the evolution of data over the whole tree. However, an increasing body of data suggests that evolution under these conditions is an exception, rather than the norm. To address this issue, several non-SRH models of molecular evolution have been proposed, but they either ignore heterogeneity in the substitution process across sites (HAS) or assume it can be modeled accurately using the distribution. As an alternative to these models of evolution, we introduce a family of mixture models that approximate HAS without the assumption of an underlying predefined statistical distribution. This family of mixture models is combined with non-SRH models of evolution that account for heterogeneity in the substitution process across lineages (HAL). We also present two algorithms for searching model space and identifying an optimal model of evolution that is less likely to over- or underparameterize the data. The performance of the two new algorithms was evaluated using alignments of nucleotides with 10 000 sites simulated under complex non-SRH conditions on a 25-tipped tree. The algorithms were found to be very successful, identifying the correct HAL model with a 75% success rate (the average success rate for assigning rate matrices to the tree's 48 edges was 99.25%) and, for the correct HAL model, identifying the correct HAS model with a 98% success rate. Finally, parameter estimates obtained under the correct HAL-HAS model were found to be accurate and precise. The merits of our new algorithms were illustrated with an analysis of 42 337 second codon sites extracted from a concatenation of 106 alignments of orthologous genes encoded by the nuclear genomes of Saccharomyces cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, S. castellii, S. kluyveri, S. bayanus, and Candida albicans. Our results show that second codon sites in the ancestral genome of these species contained 49.1% invariable sites, 39.6% variable sites belonging to one rate category (V1), and 11.3% variable sites belonging to a second rate category (V2). The ancestral nucleotide content was found to differ markedly across these three sets of sites, and the evolutionary processes operating at the variable sites were found to be non-SRH and best modeled by a combination of eight edge-specific rate matrices (four for V1 and four for V2). The number of substitutions per site at the variable sites also differed markedly, with sites belonging to V1 evolving slower than those belonging to V2 along the lineages separating the seven species of Saccharomyces. Finally, sites belonging to V1 appeared to have ceased evolving along the lineages separating S. cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, and S. bayanus, implying that they might have become so selectively constrained that they could be considered invariable sites in these species.