954 resultados para Persistent stapedial artery
Resumo:
Objective To evaluate the association of Doppler of uterine artery and flow-mediated dilation of brachial artery (FMD) in the assessment of placental perfusion and endothelial function to predict preeclampsia. Materials and Methods A total of 91 patients considered as at risk for developing preeclampsia were recruited at the prenatal unit of the authors' institution. All the patients underwent FMD and Doppler of uterine arteries between their 24th and 28th gestational weeks. Calculations of sensitivity and specificity for both isolated and associated methods were performed. Results Nineteen out of the 91 patients developed preeclampsia, while the rest remained normotensive. Doppler flowmetry of uterine arteries with presence of bilateral protodiastolic notch had sensitivity of 63.1% and specificity of 87.5% for the prediction of preeclampsia. Considering a cutoff value of 6.5%, FMD showed sensitivity of 84.2% and specificity of 73.6%. In a parallel analysis, as the two methods were associated, sensitivity was 94.2% and specificity, 64.4%. Conclusion The association of Doppler study of uterine arteries and FMD has proved to be an interesting clinical strategy for the prediction of preeclampsia, which may represent a positive impact on prenatal care of patients considered as at high-risk for developing such a condition.
Resumo:
Objective The present study evaluated the reliability of digital panoramic radiography in the diagnosis of carotid artery calcifications. Materials and Methods Thirty-five patients under high-risk for development of carotid artery calcifications who had digital panoramic radiography were referred to undergo ultrasonography. Thus, 70 arteries were assessed by both methods. The main parameters utilized to evaluate the panoramic radiography reliability in the diagnosis of carotid artery calcifications were accuracy, sensitivity, specificity and positive predictive value of this method as compared with ultrasonography. Additionally, the McNemar's test was utilized to verify whether there was a statistically significant difference between digital panoramic radiography and ultrasonography. Results Ultrasonography demonstrated carotid artery calcifications in 17 (48.57%) patients. Such individuals presented with a total of 29 (41.43%) carotid arteries affected by calcification. Radiography was accurate in 71.43% (n = 50) of cases evaluated. The degree of sensitivity of this method was 37.93%, specificity of 95.12% and positive predictive value of 84.61%. A statistically significant difference (p < 0.001) was observed between the methods evaluated in their capacity to diagnose carotid artery calcifications. Conclusion Digital panoramic radiography should not be indicated as a method of choice in the investigation of carotid artery calcifications.
Resumo:
The authors report the case of a patient victim of gunshots, with a very rare complication: venous bullet embolism from the left external iliac vein to the lingular segment of the left pulmonary artery. Diagnosis is made with whole-body radiography or computed tomography. Digital angiography is reserved for supplementary diagnosis or to be used as a therapeutic procedure.
Resumo:
Laser scanning is becoming an increasingly popular method for measuring 3D objects in industrial design. Laser scanners produce a cloud of 3D points. For CAD software to be able to use such data, however, this point cloud needs to be turned into a vector format. A popular way to do this is to triangulate the assumed surface of the point cloud using alpha shapes. Alpha shapes start from the convex hull of the point cloud and gradually refine it towards the true surface of the object. Often it is nontrivial to decide when to stop this refinement. One criterion for this is to do so when the homology of the object stops changing. This is known as the persistent homology of the object. The goal of this thesis is to develop a way to compute the homology of a given point cloud when processed with alpha shapes, and to infer from it when the persistent homology has been achieved. Practically, the computation of such a characteristic of the target might be applied to power line tower span analysis.
Resumo:
Sediment contamination is evaluated by determining organic micropollutants (organochlorine compounds - OCs and polycyclic aromatic hydrocarbons - PAHs) in two important Brazilian water reservoirs. Trace levels of OCs were observed in the Santana reservoir (44.8 ng g-1 d.w. of p,p'-DDT), while in the Funil reservoir the levels were below detection level. Forty-eight percent of the found sigmaocs were polychlorinated biphenyls, 29% dichlorodiphenyltrichloroethane (DDT), 18% Drins, and 5% other pesticides (HCB, Heptachlor, Heptachlor-epoxide, gamma-HCH and a-Endosulfan). We observed lower levels of sigmaPAH in the Funil reservoir (1 to 275 ng g-1d.w.) than in the Santana reservoir (2.2 to 26.7 µg g-1 d.w.).
Resumo:
Nontypable Haemophilus influenzae (NTHi) has emerged as an important opportunistic pathogen causing infection in adults suffering obstructive lung diseases. Existing evidence associates chronic infection by NTHi to the progression of the chronic respiratory disease, but specific features of NTHi associated with persistence have not been comprehensively addressed. To provide clues about adaptive strategies adopted by NTHi during persistent infection, we compared sequential persistent isolates with newly acquired isolates in sputa from six patients with chronic obstructive lung disease. Pulse field gel electrophoresis (PFGE) identified three patients with consecutive persistent strains and three with new strains. Phenotypic characterisation included infection of respiratory epithelial cells, bacterial self-aggregation, biofilm formation and resistance to antimicrobial peptides (AMP). Persistent isolates differed from new strains in showing low epithelial adhesion and inability to form biofilms when grown under continuous-flow culture conditions in microfermenters. Self-aggregation clustered the strains by patient, not by persistence. Increasing resistance to AMPs was observed for each series of persistent isolates; this was not associated with lipooligosaccharide decoration with phosphorylcholine or with lipid A acylation. Variation was further analyzed for the series of three persistent isolates recovered from patient 1. These isolates displayed comparable growth rate, natural transformation frequency and murine pulmonary infection. Genome sequencing of these three isolates revealed sequential acquisition of single-nucleotide variants in the AMP permease sapC, the heme acquisition systems hgpB, hgpC, hup and hxuC, the 3-deoxy-D-manno-octulosonic acid kinase kdkA, the long-chain fatty acid transporter ompP1, and the phosphoribosylamine glycine ligase purD. Collectively, we frame a range of pathogenic traits and a repertoire of genetic variants in the context of persistent infection by NTHi.
Resumo:
Coronary artery disease (CAD) is a chronic process that evolves over decades and may culminate in myocardial infarction (MI). While invasive coronary angiography (ICA) is still considered the gold standard of imaging CAD, non-invasive assessment of both the vascular anatomy and myocardial perfusion has become an intriguing alternative. In particular, computed tomography (CT) and positron emission tomography (PET) form an attractive combination for such studies. Increased radiation dose is, however, a concern. Our aim in the current thesis was to test novel CT and PET techniques alone and in hybrid setting in the detection and assessment of CAD in clinical patients. Along with diagnostic accuracy, methods for the reduction of the radiation dose was an important target. The study investigating the coronary arteries of patients with atrial fibrillation (AF) showed that CAD may be an important etiology of AF because a high prevalence of CAD was demonstrated within AF patients. In patients with suspected CAD, we demonstrated that a sequential, prospectively ECG-triggered CT technique was applicable to nearly 9/10 clinical patients and the radiation dose was over 60% lower than with spiral CT. To detect the functional significance of obstructive CAD, a novel software for perfusion quantification, CarimasTM, showed high reproducibility with 15O-labelled water in PET, supporting feasibility and good clinical accuracy. In a larger cohort of 107 patients with moderate 30-70% pre-test probability of CAD, hybrid PET/CT was shown to be a powerful diagnostic method in the assessment of CAD with diagnostic accuracy comparable to that of invasive angiography and fractional flow reserve (FFR) measurements. A hybrid study may be performed with a reasonable radiation dose in a vast majority of the cases, improving the performance of stand-alone PET and CT angiography, particularly when the absolute quantification of the perfusion is employed. These results can be applied into clinical practice and will be useful for daily clinical diagnosis of CAD.
Resumo:
Persistent luminescence materials can store energy from solar radiation or artificial lighting and release it over a period of several hours without a continuous excitation source. These materials are widely used to improve human safety in emergency and traffic signalization. They can also be utilized in novel applications including solar cells, medical diagnostics, radiation detectors and structural damage sensors. The development of these materials is currently based on methods based on trial and error. The tailoring of new materials is also hindered by the lack of knowledge on the role of their intrinsic and extrinsic lattice defects in the appropriate mechanisms. The goal of this work was to clarify the persistent luminescence mechanisms by combining ab initio density functional theory (DFT) calculations with selected experimental methods. The DFT approach enables a full control of both the nature of the defects and their locations in the host lattice. The materials studied in the present work, the distrontium magnesium disilicate (Sr2MgSi2O7) and strontium aluminate (SrAl2O4) are among the most efficient persistent luminescence hosts when doped with divalent europium Eu2+ and co-doped with trivalent rare earth ions R3+ (R: Y, La-Nd, Sm, Gd-Lu). The polycrystalline materials were prepared with the solid state method and their structural and phase purity was confirmed by X-ray powder diffraction. Their local crystal structure was studied by high-resolution transmission electron microscopy. The crystal and electronic structure of the nondoped as well as Eu2+, R2+/3+ and other defect containing materials were studied using DFT calculations. The experimental trap depths were obtained using thermoluminescence (TL) spectroscopy. The emission and excitation of Sr2MgSi2O7:Eu2+,Dy3+ were also studied. Significant modifications in the local crystal structure due to the Eu2+ ion and lattice defects were found by the experimental and DFT methods. The charge compensation effects induced by the R3+ co-doping further increased the number of defects and distortions in the host lattice. As for the electronic structure of Sr2MgSi2O7 and SrAl2O4, the experimental band gap energy of the host materials was well reproduced by the calculations. The DFT calculated Eu2+ and R2+/3+ 4fn as well as 4fn-15d1 ground states in the Sr2MgSi2O7 band structure provide an independent verification for an empirical model which is constructed using rather sparse experimental data for the R3+ and especially the R2+ ions. The intrinsic and defect induced electron traps were found to act together as energy storage sites contributing to the materials’ efficient persistent luminescence. The calculated trap energy range agreed with the trap structure of Sr2MgSi2O7 obtained using TL measurements. More experimental studies should be carried out for SrAl2O4 to compare with the DFT calculations. The calculated and experimental results show that the electron traps created by both the rare earth ions and vacancies are modified due to the defect aggregation and charge compensation effects. The relationships between this modification and the energy storage properties of the solid state materials are discussed.
Resumo:
Background: Metabolic syndrome (MetS) is a combination of several cardio-metabolic risk factors including obesity, hyperglycemia, hypertension and dyslipidemia. MetS has been associated with increased levels of apolipoprotein B (apoB) and low-density lipoprotein oxidation (OxLDL) and with an increased risk of cardiovascular disease and non-alcoholic fatty liver disease. Aims: To establish the relation of apoB and OxLDL with the MetS development and to determine the status of MetS as a risk factor for adverse liver changes and for subclinical atherosclerosis. Subjects and Methods: The present thesis is part of the two large scale population-based, prospective, observational studies. Cardiovascular Risk in Young Finns study was launched in 1980 including 3,596 subjects aged 3-18 years. Thereafter follow-up studies have been conducted regularly. In the latest follow-ups that were performed in 2001 (N=2,283) and 2007 (N=2,204), non-invasive ultrasound studies were introduced to the study protocol to measure subclinical atherosclerosis i.e. carotid intima-media thickness (IMT), carotid artery distensibility (Cdist) and brachial flow-mediated dilatation (FMD). Alanine-aminotransferase (ALT) and gammaglutamyltransferase (GGT) were measured in 2007 to assess liver function. The Bogalusa Heart Study is a long-term epidemiologic study of cardiovascular risk factors launched in 1972 in a biracial community of Bogalusa, Louisiana, USA. Total of 374 youths (aged 9-18 years at baseline in 1984-88) who underwent non-invasive ultrasound studies of the carotid artery as adults, were included in the analyses of the present thesis. Results: The odds ratios (95% confidence intervals) for MetS incidence during a 6-year follow-up by quartiles of apoB were 2.0(1.0-3.8) for the second quartile, 3.1(1.7-5.7) for the third quartile and 4.2(2.3-7.6) for the fourth quartile. OxLDL was not independently associated with incident MetS. Youth (aged 9-18 years) with MetS or with high body mass index were at 2-3 times the risk of having MetS, high IMT, and type 2 diabetes 24-years later as adults. IMT increased 79±7μm (mean±SEM) in subjects with MetS and 42±2μm in subjects without the MetS (P<0.0001) during 6- years. Subjects who lost the MetS diagnosis during 6-year follow-up had reduced IMT progression compared to persistent MetS group (0.036±0.005vs.0.079±0.010 mm, P=0.001) and reduced Cdist change compared to incident MetS group (-0.12±0.05vs.-0.38±0.10 %/mmHg, P=0.03) over 6-year follow-up. MetS predicted elevated ALT (β±SEM=0.380±0.052, P<0.0001 in men and 0.160±0.052, P=0.002 in women) and GGT (β±SEM=0.240±0.058, P<0.0001 in men and 0.262±0.053, P<0.0001 in women) levels after 6-years. Conclusions: These findings suggest that apoB may give additional information on early metabolic disturbances predisposing MetS. MetS may be used to identify individuals at increased risk of developing atherosclerosis and non-alcoholic liver disease. However, recovery from the MetS may have positive effects on liver and vascular properties.
Resumo:
Lipotoxicity is a condition in which fatty acids (FAs) are not efficiently stored in adipose tissue and overflow to non-adipose tissue, causing organ damages. A defect of adipose tissue FA storage capability can be the primary culprit in the insulin resistance condition that characterizes many of the severe metabolic diseases that affect people nowadays. Obesity, in this regard, constitutes the gateway and risk factor of the major killers of modern society, such as cardiovascular disease and cancer. A deep understanding of the pathogenetic mechanisms that underlie obesity and the insulin resistance syndrome is a challenge for modern medicine. In the last twenty years of scientific research, FA metabolism and dysregulations have been the object of numerous studies. Development of more targeted and quantitative methodologies is required on one hand, to investigate and dissect organ metabolism, on the other hand to test the efficacy and mechanisms of action of novel drugs. The combination of functional and anatomical imaging is an answer to this need, since it provides more understanding and more information than we have ever had. The first purpose of this study was to investigate abnormalities of substrate organ metabolism, with special reference to the FA metabolism in obese drug-naïve subjects at an early stage of disease. Secondly, trimetazidine (TMZ), a metabolic drug supposed to inhibit FA oxidation (FAO), has been for the first time evaluated in obese subjects to test a whole body and organ metabolism improvement based on the hypothesis that FAO is increased at an early stage of the disease. A third objective was to investigate the relationship between ectopic fat accumulation surrounding heart and coronaries, and impaired myocardial perfusion in patients with risk of coronary artery disease (CAD). In the current study a new methodology has been developed with PET imaging with 11C-palmitate and compartmental modelling for the non-invasive in vivo study of liver FA metabolism, and a similar approach has been used to study FA metabolism in the skeletal muscle, the adipose tissue and the heart. The results of the different substudies point in the same direction. Obesity, at the an early stage, is associated with an impairment in the esterification of FAs in adipose tissue and skeletal muscle, which is accompanied by the upregulation in skeletal muscle, liver and heart FAO. The inability to store fat may initiate a cascade of events leading to FA oversupply to lean tissue, overload of the oxidative pathway, and accumulation of toxic lipid species and triglycerides, and it was paralleled by a proportional growth in insulin resistance. In subjects with CAD, the accumulation of ectopic fat inside the pericardium is associated with impaired myocardial perfusion, presumably via a paracrine/vasocrine effect. At the beginning of the disease, TMZ is not detrimental to health; on the contrary at the single organ level (heart, skeletal muscle and liver) it seems beneficial, while no relevant effects were found on adipose tissue function. Taken altogether these findings suggest that adipose tissue storage capability should be preserved, if it is not possible to prevent excessive fat intake in the first place.