996 resultados para Peninsula Horticultural Society
Resumo:
This study was conducted to look into the relationship between mouth size and the total length of larval fish, and the growth in total length of larval fish in one or within a one-year period. Study material was gathered in the South China Sea, the Bay of Bangkok and the Vietnamese coast. This translation focuses on methods and conclusions of the original (longer) paper.
Resumo:
During recent years in connection with the industrialisation of the Kola Peninsula, the study of this district in the botanical respect, in particular the study of the microflora of various bodies of water, began to advance markedly. This article describes the algal flora of the Kola Peninsula. Morphological descriptions are given for three Tetraspora: Tetraspora simplex, Tetraspora tenera, Tetraspora imperfecta. Chlorophysema aduata is also described, and short descriptions of further algae found in the Kola Peninsula are given.
Resumo:
The Marquesas Islands are located in the Pacific Ocean at about 9 degrees south latitude and 140 degrees west longitude (Figure 1). It has been demonstrated by tagging (Anonymous, 1980b) that skipjack tuna, Katsuwonus pelamis, which occur in the northeastern Pacific Ocean have migrated to the Hawaiian Islands and Christmas Island in the central Pacific and also to the area between the Marshall and Mariana islands in the western Pacific. The Tuamotu, Society, Pitcairn, and Gambier islands, though the first two are not as close to the principal fishing areas of the eastern Pacific Ocean as are the Marquesas Islands, and the last two are small and isolated, are of interest for the same reasons that the Marquesas Islands are of interest, and thus skipjack should be tagged in those islands for the same reason that they should be tagged in the Marquesas Islands. The organizations which participated in the Marquesas Islands tagging and other scientific activities were the Inter-American Tropical Tuna Commission (IATTC), the South Pacific Commission (SPC), the Centre National pour l'Exploitation des Oceans (CNEXO), the Office de la Recherche Scientifique et Technique Outre-Mer (ORSTOM), the Service de la Peche de la Polynesie Francaise (SPPF), and the Service de l'Economie Rural (SER).
Resumo:
Issues January - November/December 2011. (PDF contains 88 pages)
Resumo:
The morphometric and morphological characters of the rostrum have been widely used to identify penaeid shrimp species (Heales et al., 1985; Dall et al., 1990; Pendrey et al., 1999). In this setting, one of the constraints in studies of penaeid shrimp populations has been the uncertainty in the identification of early life history stages, especially in coastal nursery habitats, where recruits and juveniles dominate the population (Dall et al., 1990; Pérez-Castañeda and Defeo, 2001). In the western Atlantic Ocean, Pérez-Farfante (1969, 1970, 1971a) described diagnostic characters of the genus Farfantepenaeus that allowed identification of individuals in the range of 8−20 mm CL (carapace length) on the basis of the following morphological features: 1) changes in the structure of the petasma and thelycum; 2) absence or presence of distomarginal spines in the ventral costa of the petasma; 3) the ratio between the keel height and the sulcus width of the sixth abdominal somite; 4) the shape and position of the rostrum with respect to the segments and flagellum of the antennule; and 5) the ratio between rostrum length (RL) and carapace length (RL/CL). In addition, she classified Farfantepenaeus into two groups according to the shape and position of the rostrum with respect to the segments and flagellum of the antennule and the ratio RL/CL: 1) F. duorarum and F. notialis: short rostrum, straight distally, and the proximodorsal margin convex, usually extending anteriorly to the end of distal antennular segment, sometimes reaching to proximal one-fourth of broadened portion of lateral antennular flagellum, with RL/CL <0.75; and 2) F. aztecus, F. brasiliensis, F. paulensis, and F. subtilis: long rostrum, usually almost straight along the entire length, extending anteriorly beyond the distal antennular segment, sometimes reaching to the distal one-third of broadened portion of lateral antennular flagellum, with RL/CL >0.80. Pérez-Farfante stressed that, for the recognition to species level of juveniles <10 mm CL, all the characters listed above should be considered because occasionally one alone may not prove to be diagnostic. However, the only characters that could be distinguished for small juveniles in the range 4−8 mm CL are those defined on the rostrum. Therefore, it has been almost impossible to identify and separate small specimens of Farfantepenaeus (Pérez-Farfante, 1970, 1971a; Pérez-Farfante and Kensley, 1997).
Resumo:
During the 1990s, sea otter (Enhydra lutris) counts in the Aleutian archipelago decreased by 70% throughout the archipelago between 1992 and 2000. Recent aerial surveys in the Aleutians did not identify the eastward extent of the decline; therefore we conducted an aerial survey along the Alaska Peninsula for comparison with baseline information. Since 1986, abundance estimates in offshore habitat have declined by 27– 49% and 93 –94% in northern and southern Alaska Peninsula study areas, respectively. During this same time period, sea otter density has declined by 63% along the island coastlines within the south Alaska Peninsula study area. Between 1989 and 2001, sea otter density along the southern coastline of the Alaska Peninsula declined by 35% to the west of Castle Cape but density increased by 4% to the east, which may indicate an eastward extent of the decline. In all study areas, sea otters were primarily concentrated in bays and lagoon, whereas historically, large rafts of otters had been distributed offshore. The population declines observed along the Alaska Peninsula occurred at roughly the same time as declines in the Aleutian islands to the east and the Kodiak archipelago to the west. Since the mid-1980s, the sea otter population throughout southwest Alaska has declined overall by an estimated 56–68%, and the decline may be one of the most significant sea otter conservation issues in our time.