874 resultados para Peatland ecology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beginning in the early 1980s, the health care system experienced momentous realignments. Fundamental changes in structures of traditional health care organizations, shifts in authority and relationships of professionals and institutions, and the increasing influence of managed care contributed to a relatively stable industry entering into a state of turbulence. The dynamics of these changes are recurring themes in the health services literature. The purpose of this dissertation was to examine the content of this literature over a defined time period and within the perspective of a theory of organizational change. ^ Using a theoretical framework based upon the organizational theory known as Organizational Ecology, secondary data from the period between 1983 and 1994 was reviewed. Analysis of the literature identified through a defined search methodology was focused upon determining the manner in which the literature characterized changes that were described. Using a model constructed from fundamentals of Organizational Ecology with which to structure an assessment of content, literature was summarized for the manner and extent of change in specific organizational forms and for the changes in emphasis by the environmental dynamics directing changes in the population of organizations. Although it was not the intent of the analysis to substantiate causal relationships between environmental resources selected as the determinants of organizational change and the observed changes in organizational forms, the structured review of content of the literature established a strong basis for inferring such a relationship. ^ The results of the integrative review of the literature and the power of the appraisal achieved through the theoretical framework constructed for the analysis indicate that there is considerable value in such an approach. An historical perspective on changes which have transformed the health care system developed within a defined organizational theory provide a unique insight into these changes and indicate the need for further development of such an analytical model. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lands inhabited by indigenous peoples often have low population density but abundant natural resources. For those reasons, many actors have historically attempted to occupy those lands or use the resources in them. Increasing pressures over lands occupied by indigenous peoples have resulted in the awakening of indigenous peoples over their rights to land and resources generating many debates over indigenous peoples' rights to land and self-governance. In this article, we provide a historical and geographical overview of territorial and governance issues among the Tsimane', an indigenous group native to the Bolivian Amazon. We examine how the Bolivian state economic policies implemented during the 20th century affected the Tsimane' ancestral lands, and how – over the late-20th century – the Bolivian state accommodated Tsimane' claims to lands in between multiple interests. We show how national policies led to the reconfiguration of Tsimane' territoriality and to a fragmented institutional representation. Current indigenous territories and indigenous political representation are an expression of conflictive policies that have involved multiple actors and their specific interests on indigenous lands and its resources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrology has been suggested as the mechanism controlling vegetation and related surficial pore-water chemistry in large peatlands. Peatland hydrology influences the carbon dynamics within these large carbon reservoirs and will influence their response to global warming. A geophysical survey was completed in Caribou Bog, a large peatland in Maine, to evaluate peatland stratigraphy and hydrology. Geophysical measurements were integrated with direct measurements of peat stratigraphy from probing, fluid chemistry, and vegetation patterns in the peatland. Consistent with previous field studies, ground-penetrating radar (GPR) was an excellent method for delineating peatland stratigraphy. Prominent reflectors from the peat-lake sediment and lake sediment-mineral soil contacts were precisely recorded up to 8 m deep. Two-dimensional resistivity and induced polarization imaging were used to investigate stratigraphy beneath the mineral soil, beyond the range of GPR. We observe that the peat is chargeable, and that IP imaging is an alternative method for defining peat thickness. The chargeability of peat is attributed to the high surface-charge density on partially decomposed organic matter. The electrical conductivity imaging resolved glaciomarine sediment thickness (a confining layer) and its variability across the basin. Comparison of the bulk conductivity images with peatland vegetation revealed a correlation between confining layer thickness and dominant vegetation type, suggesting that stratigraphy exerts a control on hydrogeology and vegetation distribution within this peatland. Terrain conductivity measured with a Geonics EM31 meter correlated with confining glaciomarine sediment thickness and was an effective method for estimating variability in glaciomarine sediment thickness over approximately 18 km(2). Our understanding of the hydrogeology, stratigraphy, and controls on vegetation growth in this peatland was much enhanced from the geophysical study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A set of high resolution surface ground penetrating radar (GPR) surveys, combined with elevation rod ( to monitor surface deformation) and gas flux measurements, were used to investigate in situ biogenic gas dynamics within a northern peatland (Caribou Bog, Maine). Gas production rates were directly estimated from the time series of GPR measurements. Spatial variability in gas production was also investigated by comparing two sites with different geological and ecological attributes, showing differences and/or similarities depending on season. One site characterized by thick highly humified peat deposits (5-6 m), wooded heath vegetation and open pools showed large ebullition events during the summer season, with estimated emissions (based on an assumed range of CH(4) concentration) between 100 and 172 g CH(4) m(-2) during a single event. The other site characterized by thinner less humified peat deposits (2-3 m) and shrub vegetation showed much smaller ebullition events during the same season (between 13 and 23 g CH(4) m(-2)). A consistent period of free-phase gas (FPG) accumulation during the fall and winter, enhanced by the frozen surficial peat acting as a confining layer, was followed by a decrease in FPG after the snow/ice melt that released estimated fluxes between 100 and 200 g CH(4) m(-2) from both sites. Estimated FPG production rates during periods of biogenic gas accumulation ranged between 0.22 and 2.00 g CH(4) m(3) d(-1) and reflected strong seasonal and spatial variability associated with differences in temperature, peat soil properties, and/or depositional attributes (e. g., stratigraphy). Periods of decreased atmospheric pressure coincided with short-period increases in biogenic gas flux, including a very rapid decrease in FPG content associated with an ebullition event that released an estimated 39 and 67 g CH(4) m(-2) in less than 3.5 hours. These results provide insights into the spatial and seasonal variability in production and emission of biogenic gases from northern peatlands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ground penetrating radar (GPR) was used to determine peat basin geometry and the spatial distribution of free-phase biogenic gasses in two separate units of a northern peatland (Central and Southern Unit of Caribou Bog, Maine). The Central Unit is characterized by a deep basin structure (15 m maximum depth) and a raised (eccentric) bog topographic profile (up to 2 m topographic variation). Here numerous regions of electromagnetic (EM) wave scattering are considered diagnostic of the presence of extensive free-phase biogenic gas. In contrast, the Southern Unit is shallower (8 m maximum depth) and has a slightly convex upwards bog profile (less than 1 m topographic variation), and areas of EM wave scattering are notably absent. The biogenic gas zones interpreted from GPR in the Central Unit are associated with: (1) wooded heath vegetation at the surface, (2) open pools at the surface, (3) high water table elevations near the center of the basin, and (4) a region of overpressure (at approximately 5 m depth) immediately below the zone of free-phase gas accumulation. The latter suggests (1) a transient pressure head associated with low hydraulic conductivity resulting from the biogenic gasses themselves or confining layers in the peat that restrict both gas release and groundwater flow and/or (2) overpressure in the peat column as a result of the gas buildup itself. In contrast, the Southern Unit, where zones of EM scattering are absent, is characterized by: (1) predominantly shrub vegetation, (2) a lack of open pools, (3) only minor variations (less than 1 m) in water table elevation throughout the entire unit; and (4) generally upward groundwater flow throughout the basin. The results illustrate the nonuniformity of free-phase biogenic gas distribution at the peat basin scale and provide insights into the processes and controls associated with CH4 and CO2 accumulation in peatlands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peatlands deform elastically during precipitation cycles by small (+/- 3 cm) oscillations in surface elevation. In contrast, we used a Global Positioning System network to measure larger oscillations that exceeded 20 cm over periods of 4 - 12 hours during two seasonal droughts at a bog and fen site in northern Minnesota. The second summer drought also triggered 19 depressuring cycles in an overpressured stratum under the bog site. The synchronicity between the largest surface deformations and the depressuring cycles indicates that both phenomena are produced by the episodic release of large volumes of gas from deep semi-elastic compartments confined by dense wood layers. We calculate that the three largest surface deformations were associated with the release of 136 g CH4 m(-2), which exceeds by an order of magnitude the annual average chamber fluxes measured at this site. Ebullition of gas from the deep peat may therefore be a large and previously unrecognized source of radiocarbon depleted methane emissions from northern peatlands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have reviewed the considerable body of research into the sea urchin phenomenon responsible for the alternation between macroalgal beds and coralline barrens in the northwestern Atlantic. In doing so, we have identified problems with both the scientific approach and the interpretation of results. Over a period of approximately 20 years, explanations for the phenomenon invoked four separate scenarios, which changed mainly as a consequence of extraneous events rather than experimental testing. Our specific concerns are that results contrary to the keystone-predator paradigm for the American lobster were circumvented, system components of the various scenarios became accepted without testing, and modifications of some components appeared arbitrary. Our review illustrates dilemmas that, we suggest, have hindered ecological progress in general. We argue for a more rigorous experimental approach, based on sound natural-history observations and strong inference. Moreover, we believe that the scientific community needs to be cautious about allowing paradigms to become established without adequate scrutiny.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Applied landscape ecology is considered to have a limited impact on decision-making. To improve the effectiveness of research, above all, closer cooperation between researchers and nonacademic actors is needed. We argue that a suitable research approach in this context is transdisciplinarity (td). We refer to td as interdisciplinary research that takes place in a complex environment-society context with a strong involvement of non-academic actors during the entire research process. A brief synthesis of a case study focusing on ‘Off-site Effects of Soil Erosion on the Swiss Plateau’ illustrates a promising application of a td approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic soils in peatlands store a great proportion of the global soil carbon pool and can lose carbon via the atmosphere due to degradation. In Germany, most of the greenhouse gas (GHG) emissions from organic soils are attributed to sites managed as grassland. Here, we investigated a land use gradient from near-natural wetland (NW) to an extensively managed (GE) to an intensively managed grassland site (GI), all formed in the same bog complex in northern Germany. Vertical depth profiles of δ13C, δ15N, ash content, C / N ratio and bulk density as well as radiocarbon ages were studied to identify peat degradation and to calculate carbon loss. At all sites, including the near-natural site, δ13C depth profiles indicate aerobic decomposition in the upper horizons. Depth profiles of δ15N differed significantly between sites with increasing δ15N values in the top soil layers paralleling an increase in land use intensity owing to differences in peat decomposition and fertilizer application. At both grassland sites, the ash content peaked within the first centimetres. In the near-natural site, ash contents were highest in 10–60 cm depth. The ash profiles, not only at the managed grassland sites, but also at the near-natural site indicate that all sites were influenced by anthropogenic activities either currently or in the past, most likely due to drainage. Based on the enrichment of ash content and changes in bulk density, we calculated the total carbon loss from the sites since the peatland was influenced by anthropogenic activities. Carbon loss at the sites increased in the following order: NW < GE < GI. Radiocarbon ages of peat in the topsoil of GE and GI were hundreds of years, indicating the loss of younger peat material. In contrast, peat in the first centimetres of the NW was only a few decades old, indicating recent peat growth. It is likely that the NW site accumulates carbon today but was perturbed by anthropogenic activities in the past. Together, all biogeochemical parameters indicate a degradation of peat due to (i) conversion to grassland with historical drainage and (ii) land use intensification.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wildfires are very rare in central Europe, which is probably why fire effects on vegetation have been neglected by most central European ecologists and palaeoecologists. Presently, reconstructions of fire history and fire ecology are almost absent. We analysed sediment cores from lakes on the Swiss Plateau (Lobsigensee and Soppensee) for pollen and charcoal to investigate the relationship between vegetation and fire. Microscopic charcoal evidence suggests increasing regional fire frequencies during the Neolithic (7350-4150 cal. BP, 5400-2200 BC) and the subsequent prehistoric epochs at Lobsigensee, whereas at Soppensee burnings remained rather rare until modern times. Neolithic peaks of charcoal at 6200 and 5500 cal. BP (4250 and 3550 BC) coincided with declines of pollen of fire-sensitive taxa at both sites (e.g., Ulmus, Tilia, Hedera, Fagus), suggesting synchronous vegetational responses to fire at regional scales. However, correlation analysis between charcoal and pollen for the period 6600-4400 cal. BP (4650-2650 BC) revealed no significant link between fire and vegetation at Soppensee, whereas at Lobsigensee increases of Corylus and decreases of Fagus were related to fire events. Fire impact on vegetation increased during the subsequent epochs at both sites. Correlation analyses of charcoal and pollen data for the period 4250-1150 cal. BP (2300 BC -AD 800) suggest that fires were intentionally set to disrupt forests and to provide open areas for arable and pastoral farming (e.g., significant positive correlations between charcoal and Cerealia, Plantago lanceolata, Asteroideae). These results are compared with southern European records (Lago di Origlio, Lago di Muzzano), which are situated in particularly fire-prone environments. After the Mesolithic period (I1 200-7350 cal. BP, 9250-5400 BC), charcoal influx was higher by an order of magnitude in the south, suggesting more frequent fires. Neolithic fires caused similar though more pronounced responses of vegetation in the south (e.g., expansions of Corylus). Post-Neolithic land-use practices involving (controlled) burning culminated in both regions at about 2550 cal. BP (c. 600 BC). However, fire-caused disappearances of entire forest communities were confined to the southern sites. Such differences in fire effects among the sites are explained by the dissimilar importance of fire as a result of different climatic conditions and cultural activities. Our results imply that the remaining (fire-sensitive) fragments of central European vegetation north of the Alps are especially endangered by increasing fire frequencies resulting from predicted climatic change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1 Pollen and charcoal analysis at two lakes in southern Switzerland revealed that fire has had a prominent role in changing the woodland composition of this area for more than 7000 years. 2 The sediment of Lago di Origlio for the period between 5100 and 3100 bc cal. was sampled continuously with a time interval of about 10 years. Peaks of charcoal particles were significantly correlated with repeated declines in pollen of Abies, Hedera, Tilia, Ulmus, Fraxinus excelsior t., Fagus and Vitis and with increases in Alnus glutinosa t., shrubs (e.g. Corylus, Salix and Sambucus nigra t.) and several herbaceous species. The final disappearance of the lowland Abies alba stands at around 3150 bc cal. may be an example of a fire-caused local extinction of a fire-intolerant species. 3 Forest fires tended to diminish pollen diversity. The charcoal peaks were preceded by pollen types indicating human activity. Charcoal minima occurred during periods of cold humid climate, when fire susceptibility would be reduced. 4 An increase of forest fires at about 2100 bc cal. severely reduced the remaining fire-sensitive plants: the mixed-oak forest was replaced by a fire-tolerant alder–oak forest. The very strong increase of charcoal influx, and the marked presence of anthropogenic indicators, point to principally anthropogenic causes. 5 We suggest that without anthropogenic disturbances Abies alba would still form lowland forests together with various deciduous broadleaved tree taxa.