996 resultados para Particle image analyser
Resumo:
This paper presents a decision support tool methodology to help virtual power players (VPPs) in the Smart Grid (SGs) context to solve the day-ahead energy resource scheduling considering the intensive use of Distributed Generation (DG) and Vehicle-To-Grid (V2G). The main focus is the application of a new hybrid method combing a particle swarm approach and a deterministic technique based on mixedinteger linear programming (MILP) to solve the day-ahead scheduling minimizing total operation costs from the aggregator point of view. A realistic mathematical formulation, considering the electric network constraints and V2G charging and discharging efficiencies is presented. Full AC power flow calculation is included in the hybrid method to allow taking into account the network constraints. A case study with a 33-bus distribution network and 1800 V2G resources is used to illustrate the performance of the proposed method.
Resumo:
The visual image is a fundamental component of epiphany, stressing its immediacy and vividness, corresponding to the enargeia of the traditional ekphrasis and also playing with cultural and social meanings. Morris Beja in his seminal book Epiphany in the Modern Novel, draws our attention to the distinction made by Joyce between the epiphany originated in a common object, in a discourse or gesture and the one arising in “a memorable phase of the mind itself”. This type materializes in the “dream-epiphany” and in the epiphany based in memory. On the other hand, Robert Langbaum in his study of the epiphanic mode, suggests that the category of “visionary epiphany” could account for the modern effect of an internally glowing vision like Blake’s “The Tyger”, which projects the vitality of a real tyger. The short story, whose length renders it a fitting genre for the use of different types of epiphany, has dealt with the impact of the visual image in this technique, to convey different effects and different aesthetic aims. This paper will present some examples of this occurrence in short stories of authors in whose work epiphany is a fundamental concept and literary technique: Walter Pater, Joseph Conrad, K. Mansfield, Clarice Lispector. Pater’s “imaginary portraits” concentrate on “priviledged moments” of the lives of the characters depicting their impressions through pictorial language; Conrad tries to show “moments of awakening” that can be remembered by the eye; Mansfield suggests that epiphany, the “glimpse”, should replace plot as an internal ordering principle of her impressionist short-stories; in C. Lispector the visualization of some situations is so aggressive that it causes nausea and a radical revelation on the protagonist’s.
Resumo:
Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors’ research group has developed a multi-agent system: MASCEM (Multi- Agent System for Competitive Electricity Markets), which performs realistic simulations of the electricity markets. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from each market context. However, it is still necessary to adequately optimize the players’ portfolio investment. For this purpose, this paper proposes a market portfolio optimization method, based on particle swarm optimization, which provides the best investment profile for a market player, considering different market opportunities (bilateral negotiation, market sessions, and operation in different markets) and the negotiation context such as the peak and off-peak periods of the day, the type of day (business day, weekend, holiday, etc.) and most important, the renewable based distributed generation forecast. The proposed approach is tested and validated using real electricity markets data from the Iberian operator – MIBEL.
Resumo:
This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding the management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.
Resumo:
Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors’ research group has developed a multi-agent system: MASCEM (Multi-Agent System for Competitive Electricity Markets), which simulates the electricity markets. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from the market context. However, it is still necessary to adequately optimize the player’s portfolio investment. For this purpose, this paper proposes a market portfolio optimization method, based on particle swarm optimization, which provides the best investment profile for a market player, considering the different markets the player is acting on in each moment, and depending on different contexts of negotiation, such as the peak and offpeak periods of the day, and the type of day (business day, weekend, holiday, etc.). The proposed approach is tested and validated using real electricity markets data from the Iberian operator – OMIE.
Resumo:
Demand response programs and models have been developed and implemented for an improved performance of electricity markets, taking full advantage of smart grids. Studying and addressing the consumers’ flexibility and network operation scenarios makes possible to design improved demand response models and programs. The methodology proposed in the present paper aims to address the definition of demand response programs that consider the demand shifting between periods, regarding the occurrence of multi-period demand response events. The optimization model focuses on minimizing the network and resources operation costs for a Virtual Power Player. Quantum Particle Swarm Optimization has been used in order to obtain the solutions for the optimization model that is applied to a large set of operation scenarios. The implemented case study illustrates the use of the proposed methodology to support the decisions of the Virtual Power Player in what concerns the duration of each demand response event.
Resumo:
Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial Para obtenção do grau de Mestre em Engenharia Informática
Resumo:
Este artigo surgiu na sequência de um atelier “Une langue étrangère, un ordinateur, une image: c’est simple comme bonjour!”, desenvolvido no âmbito do XXI Congresso da Associação Portuguesa dos Professores de Francês, Images et imaginaires pour agir. Teve como propósito divulgar, experimentar e refletir sobre recursos digitais que podem dar um bom contributo ao processo de ensino e aprendizagem do Francês Língua Estrangeira (FLE). Evidencia-se o poder da imagem na construção do conhecimento, desafiando a criatividade e novos modos de ensinar a aprender. Verificou-se que os professores se interessaram pelas ferramentas digitais e evidenciaram a sua importância e a sua aplicabilidade nos contextos educativos. Neste sentido, o artigo divulga ferramentas informáticas focadas no desenvolvimento da oralidade/leitura/escrita do francês língua estrangeira, refere boas práticas de utilização em contexto de sala de aula, constituindo uma contribuição para a renovação da escola.
Resumo:
In a time of fierce competition between regions, an image serve as a basis to develop a strong sense of community, which fosters trust and cooperation that can be mobilized for regional growth. A positive image and reputation could be used in the promotional activities of the region benefiting all the stakeholders as a whole. Mega cultural events are frequently used to attract tourists and investments to a region, but also to enhance the city’s image. This study adopts a marketing/communication perspective of city’s image, and intends to explain how the image of the city is perceived by their residents. Specifically, we intend to compare the perceptions of residents that effectively participated in the Guimarães European Capital of Culture (ECOC) 2012 (engaged residents), and the residents that only assisted to the event (attendees). Several significant findings are reported and their implications for event managers and public policy administrators presented, along with the limitations of the study.
Resumo:
This work aims to evaluate the feasibility of using image-based cytometry (IBC) in the analysis of algal cell quantification and viability, using Pseudokirchneriella subcapitata as a cell model. Cell concentration was determined by IBC to be in a linear range between 1 × 105 and 8 × 106 cells mL−1. Algal viability was defined on the basis that the intact membrane of viable cells excludes the SYTOX Green (SG) probe. The disruption of membrane integrity represents irreversible damage and consequently results in cell death. Using IBC, we were able to successfully discriminate between live (SG-negative cells) and dead algal cells (heat-treated at 65 °C for 60 min; SG-positive cells). The observed viability of algal populations containing different proportions of killed cells was well correlated (R 2 = 0.994) with the theoretical viability. The validation of the use of this technology was carried out by exposing algal cells of P. subcapitata to a copper stress test for 96 h. IBC allowed us to follow the evolution of cell concentration and the viability of copper-exposed algal populations. This technology overcomes several main drawbacks usually associated with microscopy counting, such as labour-intensive experiments, tedious work and lack of the representativeness of the cell counting. In conclusion, IBC allowed a fast and automated determination of the total number of algal cells and allowed us to analyse viability. This technology can provide a useful tool for a wide variety of fields that utilise microalgae, such as the aquatic toxicology and biotechnology fields.
Resumo:
Dissertação apresentada para obtenção do Grau de Mestre em Engenharia Informática pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Nos últimos anos, a utilização dos materiais compósitos tem vindo a tornar-se cada vez mais comum em várias indústrias, onde se verifica uma ascensão na procura pelos mesmos. Características como o baixo peso aliado à sua alta resistência e rigidez permitem que estes materiais possuam diversas aplicações em variadas áreas, desde a medicina, aeronáutica, indústria automóvel e aeroespacial, até à indústria eletrónica. Hoje em dia, o uso de desperdícios sólidos de borracha e fibras naturais na produção de materiais compósitos é, mais que uma opção, uma necessidade ambiental. De forma a reduzir as enormes quantidades de desperdícios, foi criado um material compósito constituído por uma resina termoendurecível reforçada com esses dois tipos de desperdícios. Parâmetros de fabrico como a percentagem de borracha, o tamanho das partículas de borracha, a percentagem de fibras de cana-de-açúcar e o comprimento dessas fibras foram variados, com o objetivo de estudar a influência destes dois materiais nas propriedades mecânicas do compósito. Apesar da maior parte dos compósitos serem fabricados na forma de uma peça funcional quase pronta a ser utilizada, por vezes é necessário recorrer à maquinação de furos. Apesar das muitas técnicas de furação existentes, os defeitos resultantes deste processo aplicado aos materiais compósitos são ainda muito comuns. Desses defeitos o que mais se destaca é sem dúvida a delaminação. Trinta e seis provetes de epóxido reforçado com borracha e fibra de cana-de-açúcar foram fabricados e furados, de modo a possibilitar o estudo das propriedades mecânicas do material compósito, assim como a análise da zona danificada durante a furação. Diferentes condições de furação, como tipos de broca e velocidades de avanço diferentes, foram impostas aos provetes de forma a variar o mais possível a zona de dano de uns furos para os outros. Parâmetros como a área de dano ou ainda o fator de delaminação provam ser muito úteis na caracterização e quantificação do dano na zona periférica de um furo. Recorrendo a técnicas de processamento de imagem foi possível obter esses parâmetros. O processamento e análise de imagem pode ser feito através de vários métodos. O método utilizado neste trabalho foi o software MATLAB® associado a ferramentas de processamento de imagem. Depois de feita a análise dos furos foram realizados ensaios de esmagamento a todos os provetes. Este passo permitiu assim avaliar de que forma os parâmetros de furação influenciam a resistência mecânica do material, e se a avaliação realizada aos furos é um método viável para a avaliação da extensão de dano nesses furos.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics