981 resultados para Particle Filter


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the design of a compact low pass filter (LPF) with wide stop band region using trisection stepped impedance resonators in microstrip medium. Experimental results of a low pass filter designed at 1 GHz have been compared against the analytical and EM simulation results for the validation of the design. Results are satisfactorily matching each other. The maximum insertion of the measured filter is 0.2 dB and minimum return loss is 13.5 dB over the pass band. The stop band rejection is better than 20 dB from 1.5 GHz to 4.2 GHz and hence wide stop band performance is achieved. Overall size of the filter is 30 mm x 20 mm x 0.78 mm which is 0.1 lambda x 0.066 lambda. x 0.0026 lambda at 1 GHz. (C) 2011 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effect of particle size on the electron transport and magnetic properties of La0.7Ca0.3MnO3 has been investigated. While the ferromagnetic Tc, low field magnetic susceptibility, and insulator‐metal transition are markedly affected by the particle size, the maximum magnetoresistance exhibited by the samples near Tc is not sensitive to the particle size. However, the magnetoresistance at 4.2 K increases with decrease in particle size, suggesting a substantial contribution by the grain boundaries. Preliminary measurements on La0.7Sr0.3MnO3 samples of different particle sizes also corroborate the above conclusions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional (3D) resolution improvement in multi-photon multiple-excitation-spot-optical microscopy is proposed. Specially designed spatial filter is employed for improving the overall 3D resolution of the imaging system. An improvement up to a factor of 14.5 and sub-femto liter volume excitation is achieved. The system shows substantial sidelobe reduction (<4%) due to the non-linear intensity dependence of multiphoton process. Polarization effect on x-oriented and freely rotating dipoles shows dramatic change in the field distribution at the focal-plane. The resulting point-spread function has the ability to produce several strongly localized polarization dependent field patterns which may find applications in optical engineering and bioimaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fluctuating force model is developed and applied to the turbulent flow of a gas-particle suspension in a channel in the limit of high Stokes number, where the particle relaxation time is large compared to the fluid correlation time, and low particle Reynolds number where the Stokes drag law can be used to describe the interaction between the particles and fluid. In contrast to the Couette flow, the fluid velocity variances in the different directions in the channel are highly non-homogeneous, and they exhibit significant variation across the channel. First, we analyse the fluctuating particle velocity and acceleration distributions at different locations across the channel. The distributions are found to be non-Gaussian near the centre of the channel, and they exhibit significant skewness and flatness. However, acceleration distributions are closer to Gaussian at locations away from the channel centre, especially in regions where the variances of the fluid velocity fluctuations are at a maximum. The time correlations for the fluid velocity fluctuations and particle acceleration fluctuations are evaluated, and it is found that the time correlation of the particle acceleration fluctuations is close to the time correlations of the fluid velocity in a `moving Eulerian' reference, moving with the mean fluid velocity. The variances of the fluctuating force distributions in the Langevin simulations are determined from the time correlations of the fluid velocity fluctuations and the results are compared with direct numerical simulations. Quantitative agreement between the two simulations are obtained provided the particle viscous relaxation time is at least five times larger than the fluid integral time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The particle and fluid velocity fluctuations in a turbulent gas-particle suspension are studied experimentally using two-dimensional particle image velocimetry with the objective of comparing the experiments with the predictions of fluctuating force simulations. Since the fluctuating force simulations employ force distributions which do not incorporate the modification of fluid turbulence due to the particles, it is of importance to quantify the turbulence modification in the experiments. For experiments carried out at a low volume fraction of 9.15 x 10(-5) (mass loading is 0.19), where the viscous relaxation time is small compared with the time between collisions, it is found that the gas-phase turbulence is not significantly modified by the presence of particles. Owing to this, quantitative agreement is obtained between the results of experiments and fluctuating force simulations for the mean velocity and the root mean square of the fluctuating velocity, provided that the polydispersity in the particle size is incorporated in the simulations. This is because the polydispersity results in a variation in the terminal velocity of the particles which could induce collisions and generate fluctuations; this mechanism is absent if all of the particles are of equal size. It is found that there is some variation in the particle mean velocity very close to the wall depending on the wall-collision model used in the simulations, and agreement with experiments is obtained only when the tangential wall-particle coefficient of restitution is 0.7. The mean particle velocity is in quantitative agreement for locations more than 10 wall units from the wall of the channel. However, there are systematic differences between the simulations and theory for the particle concentrations, possibly due to inadequate control over the particle feeding at the entrance. The particle velocity distributions are compared both at the centre of the channel and near the wall, and the shape of the distribution function near the wall obtained in experiments is accurately predicted by the simulations. At the centre, there is some discrepancy between simulations and experiment for the distribution of the fluctuating velocity in the flow direction, where the simulations predict a bi-modal distribution whereas only a single maximum is observed in the experiments, although both distributions are skewed towards negative fluctuating velocities. At a much higher particle mass loading of 1.7, where the time between collisions is smaller than the viscous relaxation time, there is a significant increase in the turbulent velocity fluctuations by similar to 1-2 orders of magnitude. Therefore, it becomes necessary to incorporate the modified fluid-phase intensity in the fluctuating force simulation; with this modification, the mean and mean-square fluctuating velocities are within 20-30% of the experimental values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beginning with the ‘frog-leg experiment’ by Galvani (1786), followed by the demonstrations of Volta pile by Volta (1792) and lead-acid accumulator by Plante´ (1859), several battery chemistries have been developed and realized commercially. The development of lithium-ion rechargeable battery in the early 1990s is a breakthrough in the science and technology of batteries. Owing to its high energy density and high operating voltage, the Li-ion battery has become the battery of choice for various portable applications such as note-book computers, cellular telephones, camcorders, etc. Huge efforts are underway in succeeding the development of large size batteries for electric vehicle applications. The origin of lithium-ion battery lies in the discovery that Li+-ions can reversibly be intercalated into/de-intercalated from the Van der Walls gap between graphene sheets of carbon materials at a potential close to the Li/Li+ electrode. By employing carbon as the negative electrode material in rechargeable lithium-ion batteries, the problems associated with metallic lithium in rechargeable lithium batteries have been mitigated. Complimentary investigations on intercalation compounds based on transition metals have resulted in establishing LiCoO2 as the promising cathode material. By employing carbon and LiCoO2, respectively, as the negative and positive electrodes in a non-aqueous lithium-salt electrolyte,a Li-ion cell with a voltage value of about 3.5 V has resulted.Subsequent to commercialization of Li-ion batteries, a number of research activities concerning various aspects of the battery components began in several laboratories across the globe. Regarding the positive electrode materials, research priorities have been to develop different kinds of active materials concerning various aspects such as safety, high capacity, low cost, high stability with long cycle-life, environmental compatibility,understanding relationships between crystallographic and electrochemical properties. The present review discusses the published literature on different positive electrode materials of Li-ion batteries, with a focus on the effect of particle size on electrochemical performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we describe a system of particles that perform independent random motions in space and at the end of their lifetimes give birth to a random number of offspring. We show that the system in the large density, small mass, rapid branching or long time scale limit converges to a measure-valued diffusion called the superprocess.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal oxide varistors (MOV) are popularly used to protect offline electronic equipment against power line transients. The offline switched mode power supplies (SMPS) use power line filters and MOVs in the front-end. The power line filter is used to reduce the conducted noise emission into the power line and the MOVs connected before this line filter and the MOVs connected before this line filter to clamp line transients to safer levels thereby protecting the SMPS. Because of the presence of 'X' capacitors at the input of line filter the MOV clamping voltage is increased. This paper presents one such case and gives theoretical and experimental results. An approximate method to predetermine the magnitude of such clamping voltages is also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a method of short term load forecasting with limited data, applicable even at 11 kV substation levels where total power demand is relatively low and somewhat random and weather data are usually not available as in most developing countries. Kalman filtering technique has been modified and used to forecast daily and hourly load. Planning generation and interstate energy exchange schedule at load dispatch centre and decentralized Demand Side Management at substation level are intended to be carried out with the help of this short term load forecasting technique especially to achieve peak power control without enforcing load-shedding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preferential accumulation and agglomeration kinetics of nanoparticles suspended in an acoustically levitated water droplet under radiative heating has been studied. Particle image velocimetry performed to map the internal flow field shows a single cell recirculation with increasing strength for decreasing viscosities. Infrared thermography and high speed imaging show details of the heating process for various concentrations of nanosilica droplets. Initial stage of heating is marked by fast vaporization of liquid and sharp temperature rise. Following this stage, aggregation of nanoparticles is seen resulting in various structure formations. At low concentrations, a bowl structure of the droplet is dominant, maintained at a constant temperature. At high concentrations, viscosity of the solution increases, leading to rotation about the levitator axis due to the dominance of centrifugal motion. Such complex fluid motion inside the droplet due to acoustic streaming eventually results in the formation of a ring structure. This horizontal ring eventually reorients itself due to an imbalance of acoustic forces on the ring, exposing larger area for laser absorption and subsequent sharp temperature rise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate estimation of mass transport parameters is necessary for overall design and evaluation processes of the waste disposal facilities. The mass transport parameters, such as effective diffusion coefficient, retardation factor and diffusion accessible porosity, are estimated from observed diffusion data by inverse analysis. Recently, particle swarm optimization (PSO) algorithm has been used to develop inverse model for estimating these parameters that alleviated existing limitations in the inverse analysis. However, PSO solver yields different solutions in successive runs because of the stochastic nature of the algorithm and also because of the presence of multiple optimum solutions. Thus the estimated mean solution from independent runs is significantly different from the best solution. In this paper, two variants of the PSO algorithms are proposed to improve the performance of the inverse analysis. The proposed algorithms use perturbation equation for the gbest particle to gain information around gbest region on the search space and catfish particles in alternative iterations to improve exploration capabilities. Performance comparison of developed solvers on synthetic test data for two different diffusion problems reveals that one of the proposed solvers, CPPSO, significantly improves overall performance with improved best, worst and mean fitness values. The developed solver is further used to estimate transport parameters from 12 sets of experimentally observed diffusion data obtained from three diffusion problems and compared with published values from the literature. The proposed solver is quick, simple and robust on different diffusion problems. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetorotational instability (MRI) is a crucial mechanism of angular momentum transport in a variety of astrophysical accretion disks. In systems accreting at well below the Eddington rate, such as the central black hole in the Milky Way (Sgr A*), the plasma in the disk is essentially collisionless. We present a nonlinear study of the collisionless MRI using first-principles particle-in-cell plasma simulations. We focus on local two-dimensional (axisymmetric) simulations, deferring more realistic three-dimensional simulations to future work. For simulations with net vertical magnetic flux, the MRI continuously amplifies the magnetic field, B, until the Alfven velocity, v(A), is comparable to the speed of light, c (independent of the initial value of v(A)/c). This is consistent with the lack of saturation of MRI channel modes in analogous axisymmetric MHD simulations. The amplification of the magnetic field by the MRI generates a significant pressure anisotropy in the plasma (with the pressure perpendicular to B being larger than the parallel pressure). We find that this pressure anisotropy in turn excites mirror modes and that the volume-averaged pressure anisotropy remains near the threshold for mirror mode excitation. Particle energization is due to both reconnection and viscous heating associated with the pressure anisotropy. Reconnection produces a distinctive power-law component in the energy distribution function of the particles, indicating the likelihood of non-thermal ion and electron acceleration in collisionless accretion disks. This has important implications for interpreting the observed emission-from the radio to the gamma-rays-of systems such as Sgr A*.