934 resultados para Parallel design patterns
Resumo:
This research explores gestures used in the context of activities in the workplace and in everyday life in order to understand requirements and devise concepts for the design of gestural information appliances. A collaborative method of video interaction analysis devised to suit design explorations, the Video Card Game, was used to capture and analyse how gesture is used in the context of six different domains: the dentist's office; PDA and mobile phone use; the experimental biologist's laboratory; a city ferry service; a video cassette player repair shop; and a factory flowmeter assembly station. Findings are presented in the form of gestural themes, derived from the tradition of qualitative analysis but bearing some similarity to Alexandrian patterns. Implications for the design of gestural devices are discussed.
Resumo:
The spatial patterns of beta-amyloid (Abeta) deposits and neurofibrillary tangles (NFT) were studied in areas of the cerebral cortex in 16 patients with the late-onset, sporadic form of Alzheimer’s disease (AD). Diffuse, primitive, and classic Abeta deposits and NFT were aggregated into clusters; the clusters being regularly distributed parallel to the pia mater in many areas. In a significant proportion of regions, the sizes of the regularly distributed clusters approximated to those of the cells of origin of the cortico-cortical projections. The diffuse and primitive Abeta deposits exhibited a similar range of spatial patterns but the classic Abeta deposits occurred less frequently in large clusters >6400microm. In addition, the NFT often occurred in larger regularly distributed clusters than the Abeta deposits. The location, size, and distribution of the clusters of Abeta deposits and NFT supports the hypothesis that AD is a 'disconnection syndrome' in which degeneration of specific cortico-cortical and cortico-hippocampal pathways results in synaptic disconnection and the formation of clusters of NFT and Abeta deposits.
Resumo:
Corticobasal degeneration (CBD) is a rare and progressive neurological disorder characterised by the presence of ballooned neurons (BN) and tau positive inclusions in neurons and glial cells. We studied the spatial patterns of the BN, tau positive neurons with inclusions (tau + neurons), and tau positive plaques in the neocortex and hippocampus in 12 cases of CBD. All lesions were aggregated into clusters and in many brain areas, the clusters were distributed in a regular pattern parallel to the tissue boundary. In the majority of cortical areas, the clusters of BN were larger in the lower compared with the upper laminae while the clusters of tau + neurons were larger in the upper laminae. Clusters of BN and tau + neurons were either negatively correlated or not significantly correlated in the upper and lower cortical laminae. Hence, BN and tau + lesions in CBD exhibit similar spatial patterns as lesions in Alzheimer's disease (AD), dementia with Lewy bodies (DLB) and Pick's disease (PD). The location, sizes and distribution of the clusters in the neocortex suggest that the tau + lesions may be associated with the degeneration of the feedforward and the BN the feedback cortico-cortical and/or the efferent cortical pathways. © 2001 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Neuronal intermediate filament inclusion disease (NIFID) is a new neurodegenerative disease characterized histologically by the presence of neuronal cytoplasmic inclusions (NI) immunopositive for intermediate filament proteins, neuronal loss, swollen achromatic neurons (SN), and gliosis. We studied the spatial patterns of these pathological changes parallel to the pia mater in gyri of the temporal lobe in four cases of NIFID. Both the NI and SN occurred in clusters that were regularly distributed parallel to the pia mater, the cluster sizes of the SN being significantly greater than those of the NI. In a significant proportion of areas studied, there was a spatial correlation between the clusters of NI and those of the SN and with the density of the surviving neurons. In addition, the clusters of surviving neurons were negatively correlated (out of phase) with the clusters of glial cell nuclei. The pattern of clustering of these histological features suggests that there is degeneration of the cortico-cortical projections in NIFID leading to the formation of NI and SN within the same vertical columns of cells. The glial cell reaction may be a response to the loss of neurons rather than to the appearance of the NI or SN.
Resumo:
The spatial patterns of the prion protein (PrP) deposits were studied in immunostained sections of areas of the cerebral cortex, hippocampus, dentate gyrus, and the molecular layer of the cerebellum in 11 cases of variant Creutzfeldt-Jakob disease (vCJD). Clustering of PrP deposits, with a regular distribution of the clusters parallel to the tissue boundary, was the most common spatial pattern observed. Two morphological types of PrP deposit were recognised, those consisting of a condensed core (florid deposits) and those deposits lacking a condensed core (non-florid deposits). The florid and non-florid PrP deposits exhibited a different profile of spatial patterns. First, the florid deposits exhibited a regularly distributed pattern of clusters more frequently than the non-florid deposits. Second, the florid deposits formed larger clusters (greater than1,600 µm in diameter) less frequently than the non-florid deposits. In the areas of the cerebral cortex that exhibited a regular distribution of PrP deposit clusters, the cluster size of the deposits approximated that of the groups of cells of the cortico-cortical pathway origin in only 12% of analyses. No significant differences in the frequency of the different types of spatial pattern were observed in different brain regions, or in the cerebral cortex between the upper and lower laminae. It was concluded that the spatial patterns of the PrP deposits in the cerebral cortex in vCJD are unlikely to reflect the degeneration of the cortico-cortical pathways as has been reported in sporadic CJD (sCJD). In addition, different factors could be involved in the development of the deposits with and without a condensed core.
Resumo:
Similar pathological processes may be involved in the deposition of extracellular proteins in the brains of patients with Creutzfeldt-Jakob disease (CJD) and Alzheimer's disease (AD). Hence, this study compared the spatial patterns of prion protein (PrP) deposits in the cerebral cortex and hippocampus in cases of sporadic CJD with those of β-amyloid (Aβ) deposits in sporadic AD. PrP and Aβ deposits were aggregated into clusters and, in 90% of brain areas in CJD and 57% in AD, the clusters were regularly distributed parallel to the tissue boundary. In a significant proportion of cortical analyses, the mean diameter of the clusters of PrP and Aβ deposits were similar to those of the cells of origin of the cortico-cortical pathways. Aβ deposits in AD were distributed more frequently in larger-sized clusters than PrP deposits in CJD. In addition, in the hippocampus and dentate gyrus, clustering of Aβ deposits was observed in AD but PrP deposits were rare in these regions in CJD. The size, location and distribution of the extracellular protein deposits within the cortex of both disorders was consistent with the degeneration of the cortico-cortical pathways. Furthermore, spread of the pathology along these pathways may be a pathogenic feature common to CJD and AD. © 2001 Elsevier Science Ireland Ltd.
Resumo:
The spatial patterns of the diffuse, primitive, and classic β-amyloid (Aβ) deposits were compared in cortical regions in early-onset familial Alzheimer's disease (EO-FAD) linked to mutations of the amyloid precursor protein APP) or presenilin 1 (PSEN1) genes, late-onset familial AD (LO-FAD), and sporadic AD (SAD). The objective was to determine whether genetic factors influenced the spatial patterns of the Aβ deposits. Aβ deposits were distributed either in clusters which were regularly distributed parallel to the pia mater or in larger, non-regularly distributed clusters. There were no significant differences in spatial pattern of the diffuse deposits between patient groups but mean cluster size of the diffuse deposits was larger in FAD compared with SAD. Primitive Aβ deposits were more frequently distributed in regular clusters and less frequently distributed in large clusters in FAD compared with SAD. Classic Aβ deposits were more frequently distributed in regularly spaced clusters and less frequently distributed in large clusters in LO-FAD compared with EO-FAD. There were no significant differences in the spatial patterns or cluster sizes of Aβ deposits in cases classified according to apolipoprotein E (APOE) genotype. These results suggest (1) greater deposition of Aβ in the form of clusters of diffuse deposits in FAD, (2) a greater proportion of diffuse deposits may be converted to primitive deposits in SAD, (3) classic deposits are more widely distributed in EO-FAD, and (4) the presence of APOE allele ε4 has little effect on the spatial patterns of Aβ deposits.
Resumo:
In Alzheimer's disease (AD) brain, beta-amyloid (Abeta) deposits and neurofibrillary tangles (NFT) are not randomly distributed but exhibit a spatial pattern, i.e., a departure from randomness towards regularity or clustering. Studies of the spatial pattern of a lesion may contribute to an understanding of its pathogenesis and therefore, of AD itself. This article describes the statistical methods most commonly used to detect the spatial patterns of brain lesions and the types of spatial patterns exhibited by ß-amyloid deposits and NFT in the cerebral cortex in AD. These studies suggest that within the cerebral cortex, Abeta deposits and NFT exhibit a similar spatial pattern, i.e., an aggregation of individual lesions into clusters which are regularly distributed parallel to the pia mater. The location, size and distribution of these clusters supports the hypothesis that AD is a 'disconnection syndrome' in which degeneration of specific cortical pathways results in the formation of clusters of NFT and Abeta deposits. In addition, a model to explain the development of the pathology within the cerebral cortex is proposed.
Resumo:
Research on production systems design has in recent years tended to concentrate on ‘software’ factors such as organisational aspects, work design, and the planning of the production operations. In contrast, relatively little attention has been paid to maximising the contributions made by fixed assets, particularly machines and equipment. However, as the cost of unproductive machine time has increased, reliability, particularly of machine tools, has become ever more important. Reliability theory and research has traditionally been based in the main on electrical and electronic equipment whereas mechanical devices, especially machine tools, have not received sufficiently objective treatment. A recently completed research project has considered the reliability of machine tools by taking sample surveys of purchasers, maintainers and manufacturers. Breakdown data were also collected from a number of engineering companies and analysed using both manual and computer techniques. Results obtained have provided an indication of those factors most likely to influence reliability and which in turn could lead to improved design and selection of machine tool systems. Statistical analysis of long-term field data has revealed patterns of trends of failure which could help in the design of more meaningful maintenance schemes.
Resumo:
Changes in the design of hospital wards have usually been determined by architects and members of the nursing and medical professions; the views and preferences of patients have seldom been sought directly. The Hospital Anxiety and Depression scale and the Disturbance Due to Hospital Noise questionnaire were administered to 64 female patients on bay and Nightingale wards together with a questionnaire designed for this study. Perceptions of social and physical factors of ward design were examined, and their relationship to psychological well-being and sleep patterns. The results show that the bay ward seemed to offer a more favourable environment for patients but some of the disadvantages of bay wards are balanced by better staffing levels and better and more modern facilities. Visibility to nurses was lower on the bay ward. The Nightingale ward was perceived as significantly noisier than the bay ward and noise levels were significantly correlated to anxiety scores. Paradoxically the increase in noise levels appeared to improve the perceived level of privacy on the Nightingale ward. Seventy-five per cent of patients were found to prefer the bay ward design, and since neither design appears to have major disadvantages their continued introduction should be encouraged. However, recommendations are made concerning the optimizing of patients' well-being within the bay ward setting.
Resumo:
The spatial patterns of diffuse, primitive and classic beta-amyloid (Abeta) deposits were studied in regions of the temporal lobe in cases of ‘pure’ Dementai with Lewy bodies (DLB), cases of DLB with associated Alzheimer’s disease (AD) (DLB/AD) and cases of ‘pure’ AD. Abeta deposits occurred in clusters in all patient groups. In the majority of brain areas studied, either a single large (=6400 micron) cluster of Abeta deposits was present or Abeta deposits occurred in smaller clusters which were regularly distributed parallel to the tissue boundary. No significant differences in the spatial patterns of Abeta deposits were observed in ‘pure’ DLB compared with DLB/AD. The spatial patterns of Abeta deposits in DLB/AD cases were generally similar to those observed in AD. However, in DLB/AD the primitive deposits occurred less often in a single large cluster and more often in smaller, regularly spaced clusters than in ‘pure’ AD. The data suggest a more specific pattern of degeneration associated with Abeta deposition in DLB/AD cases compared with ‘pure’ AD.
Resumo:
The spatial patterns of Lewy bodies (LB), senile plaques (SP), and neurofibrillary tangles (NFT) were studied in ubiquitin-stained sections of the temporal lobe in cases of dementia with Lewy bodies (DLB), which varied in the degree of associated Alzheimer's disease (AD) pathology. In all patients, LB, SP, and NFT developed in clusters and in a significant proportion of brain areas, the clusters exhibited a regular periodicity parallel to the tissue boundary. In the lateral occipitotemporal gyrus (LOT) and parahippocampal gyrus (PHG), the clusters of LB were larger than those of the SP and NFT but in the hippocampus, clusters of the three lesions were of similar size. Mean cluster size of the LB, SP, and NFT was similar in cases of DLB with and without significant associated AD pathology. LB density was positively correlated with SP and NFT density in 42 and 17% of brain areas analyzed, respectively, while SP and NFT densities were positively correlated in 7% of brain areas. The data suggest that LB in DLB exhibit similar spatial patterns to SP and NFT in AD and that SP and NFT exhibit similar spatial patterns in DLB and AD. In addition, in some instances, clusters of LB appeared to be more closely related spatially to the clusters of SP than to NFT.
Resumo:
Clustering of cellular neurofibrillary tangles (NFT) was studied in the cerebral cortex and hippocampus in cases of Alzheimer’s disease (AD) using a regression method. The objective of the study was to test the hypothesis that clustering of NFTs reflects the degeneration of the cortico-cortical pathways. In 25/38 (66%) of analyses of individual brain areas, a significant peak to trough and peak to peak distance was obtained suggesting that the clusters of NFTs were regularly distributed in bands parallel to the tissue boundary. In analyses of cortical tissues with regularly distributed clusters, peak to peak distance was between 1000 and 1600 microns in 13/24 (54%) of analyses, >1600 microns in 10/24 (42%) and <1000 microns in 1/24 (4%) of analyses. A regular distribution of NFT clusters was less evident in the CA sectors of the hippocampus than in the cortex. Hence, in a significant proportion of brain areas, the spacing of NFT clusters along the cerebral cortex was consistent with the predicted distribution of the cells of origin of specific cortico-cortical projections. However, in many brain regions, the sizes of the NFT clusters were larger than predicted which may be attributable to the spread of NFTs to adjacent groups of cells as the disease progresses.
Resumo:
The spatial patterns of Pick bodies (PB), Pick cells (PC), senile plaques (SP) and neurofibrillary tangles (NFT) were studied in the frontal and temporal lobe in nine cases of Pick’s disease (PD). Pick bodies exhibited clustering in 41/44 (93%) of analyses and clusters of PB were regularly distributed parallel to the tissue boundary in 24/41 (58%) of analyses. Pick cells exhibited clustering with regular periodicity of clusters in 14/16 (88%) analyses, SP in three out of four (75%) analyses and NFT in 21/27 (78%) analyses. The largest clusters of PB were observed in the dentate gyrus and PC in the frontal cortex. In 10/17 (59%) brain areas studied, a positive or negative correlation was observed between the densities of PB and PC. The densities of PB and NFT were not significantly correlated in the majority of brain areas but a negative correlation was observed in 7/29 (24%) brain areas. The data suggest that PB and PC in patients with PD exhibit essentially the same spatial patterns as SP and NFT in Alzheimer’s disease (AD) and Lewy bodies (LB) in dementia with Lewy bodies (DLB). In addition, there was a spatial correlation between the clusters of PB and PC, suggesting a pathogenic relationship between the two lesions. However, in the majority of tissues examined there was no spatial correlation between the clusters of PB and NFT, suggesting that the two lesions develop in association with different populations of neurons.
Resumo:
The spatial patterns of diffuse, primitive, classic and compact beta-amyloid (Abeta) deposits were studied in the medial temporal lobe in 14 elderly, non-demented patients (ND) and in nine patients with Alzheimer’s disease (AD). In both patient groups, Abeta deposits were clustered and in a number of tissues, a regular periodicity of Abeta deposit clusters was observed parallel to the tissue boundary. The primitive deposit clusters were significantly larger in the AD cases but there were no differences in the sizes of the diffuse and classic deposit clusters between patient groups. In AD, the relationship between Abeta deposit cluster size and density in the tissue was non-linear. This suggested that cluster size increased with increasing Abeta deposit density in some tissues while in others, Abeta deposit density was high but contained within smaller clusters. It was concluded that the formation of large clusters of primitive deposits could be a factor in the development of AD.