989 resultados para Palladium catalysts
Resumo:
Electrodeposition of novel Au/Pd bimetallic nanostructures with dendrimer films as matrices has been reported. The dendrimers exhibited highly open structures arising from protonation of amines and this made them have good penetrability for solvent molecules. The unique properties of dendrimers obviously affected the morphologies and compositions of deposited bimetallic nanostructures compared with those from unmodified surfaces. Field-emitted scanning electron microscopy, energy dispersive spectroscopy, X-ray photoelectron spectroscopy and UV-vis spectroscopy were used to characterize these nanostructures.
Resumo:
The B3LYP hybrid density functional method has been carried Out to Study theoretically the mechanisin of Pd(0)-catalyzed alkyne cyanoboration reaction. Both the intermolecular and intramolecular alkyne cyanoboration reactions were studied. For each reaction, three paths were proposed. In path A of each reaction, the first step is B-CN bond oxidative addition to bisphosphine complex Pd(PH3)(2), in path B of each reaction, the first step is alkyne coordination to bisphosphine complex Pd(PH3)2, and in path C of each reaction, the first step is the PH3 dissociation front Pd(PH3)2 to form monophosphine complex Pd(PH3) For both reactions, path B is favored.
Resumo:
The reaction mechanism of the Pd(0)-catalyzed alkyne cyanothiolation reaction is investigated by MP2, CCSD(T) and the density functional method B3LYP. The overall reaction mechanism is examined. The B3LYP results are consistent with the results of CCSD(T) and MP2 methods for the isomerization, acetylene insertion and reductive elimination steps, but not for the oxidative addition step. For the oxidative addition, the bisphosphine and monophosphine pathways are competitive in B3LYP, while the bisphosphine one is preferred for CCSD(T) and MP2 methods.
Resumo:
A carbon-supported palladium catalyst modified by non-metal phosphorus(PdP/C) has been developed as an oxygen reduction catalyst for direct methanol fuel cells.The PdP/C catalyst was prepared by the sodium hypophosphite reduction method. The as-prepared Pd nanoparticles have a narrow size distribution with an average diameter of 2 nm. Energy dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) results indicate that P enters into the crystal lattice of Pd and forms an alloy.
Resumo:
Nearly monodisperse Pd nanocubes with controllable sizes were synthesized through a seed-mediated growth approach. By using Pd nanocubes of 22 nm in size as seeds, the morphology of the as-grown nanostructures was fixed as single-crystalline, which enabled us to rationally tune the size of Pd nanocubes. The formation mechanism of initial 22 nm nanocubes was also discussed. The size-dependent surface plasmon resonance properties of the as-synthesized Pd nanocubes were investigated. Compared with previous methods, the yield, monodispersity, perfection of the shape formation, and the range of size control of these nanocubes are all improved.
Resumo:
A series of silica-supported silicotungstic acid catalysts (H4SiW12O40, abbreviated as HSiW), modified with various loadings of Teflon (HSiW/SiO2-Teflon), were prepared by impregnation method. The surface properties of the catalysts were studied by means of XRD, BET, NH3-TPD and the Drop Shape Analyzer (DSA) measurements. Both the surface hydrophobicity and the surface lipophobicity of HSiW/SiO2-Teflon catalysts are enhanced by means of the addition of Teflon.
Resumo:
A series of salicylaldimine-based neutral Ni(II) complexes (3a-j) [ArN = CH(C6H40)]Ni(PPh3)Ph [3a,Ar = C6H5; 3b,Ar = C6H4F(o); 3c, Ar = C6H4F(m); 3d, Ar = C6H4F(p); 3e, Ar = C6H3F2(2,4); 3f, Ar = C6H3F2(2,5); 3g, Ar = C6H3F2(2,6); 3h, Ar = C6H3F2(3,5); 3i, Ar = C6H2F3(3,4,5); 3j, Ar = C6H5] have been synthesized in good yield, and the structures of complexes 3a and 3i have been confirmed by X-ray crystallographic analysis. Using modified methylaluminoxane as a cocatalyst, these neutral Ni(II) complexes exhibited high catalytic activities for the vinylic polymerization of norbornene.
Resumo:
Five novel vanadium(III) complexes [PhN = C(R-2)CHC(R-1)O]VCl2(THF)(2) (4a: R-1 = Ph, R-2 = CF3; 4b: R-1 =t-Bu, R-2 = CF3; 4c: R-1 = CF3, R-2 = CH3; 4d: R-1 = Ph, R-2 = CH3; 4e: R-1 = Ph, R-2 = H) have been synthesized and characterized. On activation with Et2AlCl, all the complexes, in the presence of ethyl trichloroacetate (ETA) as a promoter, are highly active precatalysts for ethylene polymerization, and produce high molecular weight and linear polymers. Catalyst activities more than 16.8 kg PE/mmolv h bar and weight-average molecular weights higher than 173 kg/ mol were observed under mild conditions.
Resumo:
Silica and Merrifield resin were used as carriers for the support of alpha-diimine nickel(II) precatalysts for ethylene polymerization. The alpha-diimine ligands containing allyl were modified by introducing the reactive Si-Cl end-group, allowing their immobilization via a direct reaction of the Si-Cl groups with the silanols on silica surface or the hydroxyls on the ethanolamine-modified Merrifield resin. The resulting supported alpha-diimine ligands were characterized by analytical and spectroscopic techniques (NMR and Fr-IR).
Resumo:
In this paper, it was found that the electrocatalytic activity of a Pt electrode for the electro-oxidation of formic acid could be dramatically enhanced with the modification of macrocycle compounds, such as iron-tetrasulfophthalocyanine (FeTSPc). The electro-oxidation of formic acid on a modified Pt electrode with FeTSPc occurs mainly through a direct pathway. A series of macrocycle compounds were also investigated as modifiers and exhibited a promotion effect similar to the Pt electrode.
Resumo:
A simple and rapid synthesis method (denoted as modified impregnation method, MI) for PtRu/CNTs (MI) and PtRu/C (MI) was presented. PtRu/CNTs (MI) and PtRu/C (MI) catalysts were characterized by transmission electron microscopy (TEM) and X-ray diffractometry. It was shown that Pt-Ru particles with small average size (2.7 nm) were uniformly dispersed on carbon supports (carbon nanotubes and carbon black) and displayed the characteristic diffraction peaks of Pt face-centered cubic structure.
Resumo:
The hybrid material based on WO3 and Vulcan XC-72R carbon has been used as the support of Pd nano-catalysts. The resultant Pd-WO3/C catalysts in a large range of WO3 content exhibit excellent catalytic activity and stability for formic acid electrooxidation. The great improvement in the catalytic performance is attributed to the uniform dispersion of Pd with less particle sizes on the WO3/C support and the hydrogen spillover effect which greatly accelerates the dehydrogenation of HCOOH on Pd.
Synthesis of Pd/C catalysts with designed lattice constants for the electro-oxidation of formic acid
Resumo:
Pd/C catalysts with designed lattice constants were synthesized for the electro-oxidation of formic acid. By changing the solvents in the preparation procedure, it was demonstrated that the different lattice constants of Pd crystallites could be controlled as desired. The varied lattice constants may be attributed to the difference in the interactions between solvents and PdCl2. it was found that the lattice constant had an obvious effect on the electro-catalytic performance of Pd.
Resumo:
A series of phosphoryl (P=O) contained compounds: triethylphosphate (a), diethyl phenyl phosphate (b), ethyldiphenylphosphate (c) triarylphosphates (d and h-m), triphenylphosphine oxide (e), phenyl diphenylphosphinate (f) and diphenyl phenylphosphonate (g) have been prepared. Iron catalysts, which are generated in situ by mixing the compounds with Fe(2-EHA)(3) and (AlBu3)-Bu-i in hexane, are tested for butadiene polymerization at 50 degrees C. Phosphates donated catalysts have been, unprecedently, found to conduct extremely high syndiotactically (pentad, rrrr=46.1-94.5%) enriched 1,2-selective (1,2-structure content=56.2-94.3%) polymerization of butadiene.
Resumo:
Vapor-phase dehydration of glycerol to produce acrolein was investigated at 320 A degrees C over rare earth (including La, Ce, Nd, Sm, Eu, Gd, Tb, Ho, Er, Tm, Yb, Lu) pyrophosphates, which were prepared by precipitation method. The most promising catalysts were characterized by means of XRD, FT-IR, TG-DTA, BET and NH3-TPD measurements. The excellent catalytic performance of rare earth pyrophosphate depends on the appropriate surface acidity which can be obtained by the control of pH value in the precipitation and the calcination temperature, e.g. Nd-4(P2O7)(3) precipitated at pH = 6 and calcined at 500 A degrees C in the catalyst preparation.