951 resultados para POOL DE OPERADORES
Resumo:
Background: Studies have examined the effects of temperature on mortality in a single city, country, or region. However, less evidence is available on the variation in the associations between temperature and mortality in multiple countries, analyzed simultaneously. Methods: We obtained daily data on temperature and mortality in 306 communities from 12 countries/regions (Australia, Brazil, Thailand, China, Taiwan, Korea, Japan, Italy, Spain, United Kingdom, United States, and Canada). Two-stage analyses were used to assess the nonlinear and delayed relation between temperature and mortality. In the first stage, a Poisson regression allowing overdispersion with distributed lag nonlinear model was used to estimate the community-specific temperature-mortality relation. In the second stage, a multivariate meta-analysis was used to pool the nonlinear and delayed effects of ambient temperature at the national level, in each country. Results: The temperatures associated with the lowest mortality were around the 75th percentile of temperature in all the countries/regions, ranging from 66th (Taiwan) to 80th (UK) percentiles. The estimated effects of cold and hot temperatures on mortality varied by community and country. Meta-analysis results show that both cold and hot temperatures increased the risk of mortality in all the countries/regions. Cold effects were delayed and lasted for many days, whereas heat effects appeared quickly and did not last long. Conclusions: People have some ability to adapt to their local climate type, but both cold and hot temperatures are still associated with increased risk of mortality. Public health strategies to alleviate the impact of ambient temperatures are important, in particular in the context of climate change.
Resumo:
STUDY QUESTION Can the number of oocytes retrieved in IVF cycles be predictive of the age at menopause? SUMMARY ANSWER The number of retrieved oocytes can be used as an indirect assessment of the extent of ovarian reserve to provide information on the duration of the reproductive life span in women of different ages. WHAT IS KNOWN ALREADY Menopause is determined by the exhaustion of the ovarian follicular pool. Ovarian reserve is the main factor influencing ovarian response in IVF cycles. As a consequence the response to ovarian stimulation with the administration of gonadotrophins in IVF treatment may be informative about the age at menopause. STUDY DESIGN, SIZE, DURATION In the present cross-sectional study, participants were 1585 infertile women from an IVF clinic and 2635 menopausal women from a more general population. PARTICIPANTS/MATERIALS, SETTING, METHODS For all infertile women, the response to ovarian stimulation with gonadotrophins was recorded. For menopausal women, relevant demographic characteristics were available for the analysis. MAIN RESULTS AND THE ROLE OF CHANCE A cubic function described the relationship between mean numbers of oocytes and age, with all terms being statistically significant. From the estimated residual distribution of the actual number of oocytes about this mean, a distribution of the age when there would be no oocytes retrieved following ovarian stimulation was derived. This was compared with the distribution of the age at menopause from the menopausal women, showing that menopause occurred about a year later. LIMITATIONS, REASONS FOR CAUTION The retrieved oocyte data were from infertile women, while the menopausal ages were from a more general population. WIDER IMPLICATIONS OF THE FINDINGS In the present study, we have shown some similarity between the distributions of the age when no retrieved oocytes can be expected after ovarian stimulation and the age at menopause. For a given age, the lower the ovarian reserve, the lower the number of retrieved oocytes would be and the earlier the age that menopause would occur.
Resumo:
On the basis of a more realistic tetrakaidecahedral structure of foam bubbles, a network model of static foam drainage has been developed. The model considers the foam to be made up of films and Plateau borders. The films drain into the adjacent Plateau borders, which in turn form a network through which the liquid moves from the foam to the liquid pool. From the structure, a unit flow cell was found, which constitutes the foam when stacked together both horizontally and vertically. Symmetry in the unit flow cell indicates that the flow analysis of a part of it can be employed to obtain the drainage for the whole foam. Material balance equations have been written for each segment of this subsection, ensuring connectivity, and solved with the appropriate boundary and initial conditions. The calculated rates of drainage, when compared with the available experimental results, indicate that the model predicts the experimental results well.
Resumo:
In the context of removal of organic pollutants from wastewater, sonolysis of CCl4 dissolved in water has been widely investigated. These investigations are either completely experimental or correlate data empirically. In this work, a quantitative model is developed to predict the rate of sonolysis of aqueous CCl4. The model considers the isothermal growth and partially adiabatic collapse of cavitation bubbles containing gas and vapor leading to conditions of high temperatures and pressures in them, attainment of thermodynamic equilibrium at the end of collapse, release of bubble contents into the liquid pool, and reactions in the well-mixed pool. The model successfully predicts the extent of degradation of dissolved CCl4, and the influence of various parameters such as initial concentration of CCl4, temperature, and nature of gas atmosphere above the liquid. in particular, it predicts the results of Hua and Hoffmann (Environ. Sci Technol, 1996, 30, 864-871), who found that degradation is first order with CCl4 and that Argon as well as Ar-O-3 atmospheres give the same results. The framework of the model is capable of quantitatively describing the degradation of many dissolved organics by considering all the involved species.
Resumo:
Lasers are very efficient in heating localized regions and hence they find a wide application in surface treatment processes. The surface of a material can be selectively modified to give superior wear and corrosion resistance. In laser surface-melting and welding problems, the high temperature gradient prevailing in the free surface induces a surface-tension gradient which is the dominant driving force for convection (known as thermo-capillary or Marangoni convection). It has been reported that the surface-tension driven convection plays a dominant role in determining the melt pool shape. In most of the earlier works on laser-melting and related problems, the finite difference method (FDM) has been used to solve the Navier Stokes equations [1]. Since the Reynolds number is quite high in these cases, upwinding has been used. Though upwinding gives physically realistic solutions even on a coarse grid, the results are inaccurate. McLay and Carey have solved the thermo-capillary flow in welding problems by an implicit finite element method [2]. They used the conventional Galerkin finite element method (FEM) which requires that the pressure be interpolated by one order lower than velocity (mixed interpolation). This restricts the choice of elements to certain higher order elements which need numerical integration for evaluation of element matrices. The implicit algorithm yields a system of nonlinear, unsymmetric equations which are not positive definite. Computations would be possible only with large mainframe computers.Sluzalec [3] has modeled the pulsed laser-melting problem by an explicit method (FEM). He has used the six-node triangular element with mixed interpolation. Since he has considered the buoyancy induced flow only, the velocity values are small. In the present work, an equal order explicit FEM is used to compute the thermo-capillary flow in the laser surface-melting problem. As this method permits equal order interpolation, there is no restriction in the choice of elements. Even linear elements such as the three-node triangular elements can be used. As the governing equations are solved in a sequential manner, the computer memory requirement is less. The finite element formulation is discussed in this paper along with typical numerical results.
Resumo:
The solidification behaviour is described of two pure metals (Bi and Ni) and two eutectic alloys (A1-Ge and AI-Cu) under nonequilibrium conditions, in particular the microsecond pulsed laser surface melting. The resolidification behaviour of bismuth shows that epitaxial regrowth is the dominant mechanism. For mixed grain size, regrowth of larger grains dominates the microstructure and can result in the development of texture. In the case of nickel, epitaxial growth has been noted. For lower energy pulse-melted pool, grain refinement takes place, indicating nucleation of fresh nickel grains. The A1-Ge eutectic alloy indicates the nucleation and columnar growth of a metastable monoclinic phase from the melt-substrate interface at a high power density laser irradiation. An equiaxed microstructure containing the same monoclinic phase is obtained at a lower power density laser irradiation. It is shown that the requirement of solution partition acts as a barrier to eutectic regrowth from the substrate. The laser-melted pool of A1-Cu eutectic alloy includes columnar growth of c~-A1 and 0-A12Cu phase followed by the dendritic growth of A12Cu phase with ct-Al forming at the interdendritic space. In addition, a banded microstructure was observed in the resolidified laser-melted pool.
Resumo:
Background Calcification is commonly believed to be associated with cardiovascular disease burden. But whether or not the calcifications have a negative effect on plaque vulnerability is still under debate. Methods and Results Fatigue rupture analysis and the fatigue life were used to evaluate the rupture risk. An idealized baseline model containing no calcification was first built. Based on the baseline model, we investigated the influence of calcification on rupture path and fatigue life by adding a circular calcification and changing its location within the fibrous cap area. Results show that 84.0% of calcified cases increase the fatigue life up to 11.4%. For rupture paths 10D far from the calcification, the life change is negligible. Calcifications close to lumen increase more fatigue life than those close to the lipid pool. Also, calcifications in the middle area of fibrous cap increase more fatigue life than those in the shoulder area. Conclusion Calcifications may play a positive role in the plaque stability. The influence of the calcification only exists in a local area. Calcifications close to lumen may be influenced more than those close to lipid pool. And calcifications in the middle area of fibrous cap are seemly influenced more than those in the shoulder area.
Resumo:
Rupture of atheromatous plaque is the major cause of stroke or heart attack. Considering that the cardiovascular system is a classic fatigue environment, plaque rupture was treated as a chronic fatigue crack growth process in this study. Fracture mechanics theory was introduced to describe the stress status at the crack tip and Paris' law was used to calculate the crack growth rate. The effect of anatomical variation of an idealized plaque cross-section model was investigated. The crack initiation was considered to be either at the maximum circumferential stress location or at any other possible locations around the lumen. Although the crack automatically initialized at the maximum circumferential stress location usually propagated faster than others, it was not necessarily the most critical location where the fatigue life reached its minimum. We found that the fatigue life was minimum for cracks initialized in the following three regions: the midcap zone, the shoulder zone, and the backside zone. The anatomical variation has a significant influence on the fatigue life. Either a decrease in cap thickness or an increase in lipid pool size resulted in a significant decrease in fatigue life. Comparing to the previously used stress analysis, this fatigue model provides some possible explanations of plaque rupture at a low stress level in a pulsatile cardiovascular environment, and the method proposed here may be useful for further investigation of the mechanism of plaque rupture based on in vivo patient data.
Resumo:
It has been well accepted that over 50% of cerebral ischemic events are the result of rupture of vulnerable carotid atheroma and subsequent thrombosis. Such strokes are potentially preventable by carotid interventions. Selection of patients for intervention is currently based on the severity of carotid luminal stenosis. It has been, however, widely accepted that luminal stenosis alone may not be an adequate predictor of risk. To evaluate the effects of degree of luminal stenosis and plaque morphology on plaque stability, we used a coupled nonlinear time-dependent model with flow-plaque interaction simulation to perform flow and stress/strain analysis for stenotic artery with a plaque. The Navier-Stokes equations in the Arbitrary Lagrangian-Eulerian (ALE) formulation were used as the governing equations for the fluid. The Ogden strain energy function was used for both the fibrous cap and the lipid pool. The plaque Principal stresses and flow conditions were calculated for every case when varying the fibrous cap thickness from 0.1 to 2mm and the degree of luminal stenosis from 10% to 90%. Severe stenosis led to high flow velocities and high shear stresses, but a low or even negative pressure at the throat of the stenosis. Higher degree of stenosis and thinner fibrous cap led to larger plaque stresses, and a 50% decrease of fibrous cap thickness resulted in a 200% increase of maximum stress. This model suggests that fibrous cap thickness is critically related to plaque vulnerability and that, even within presence of moderate stenosis, may play an important role in the future risk stratification of those patients when identified in vivo using high resolution MR imaging.
Resumo:
Atheromatous plaque rupture h the cause of the majority of strokes and heart attacks in the developed world. The role of calcium deposits and their contribution to plaque vulnerability are controversial. Some studies have suggested that calcified plaque tends to be more stable whereas others have suggested the opposite. This study uses a finite element model to evaluate the effect of calcium deposits on the stress within the fibrous cap by varying their location and size. Plaque fibrous cap, lipid pool and calcification were modeled as hyperelastic, Isotropic, (nearly) incompressible materials with different properties for large deformation analysis by assigning time-dependent pressure loading on the lumen wall. The stress and strain contours were illustrated for each condition for comparison. Von Mises stress only increases up to 1.5% when varying the location of calcification in the lipid pool distant to the fibrous cap. Calcification in the fibrous cap leads to a 43% increase of Von Mises stress when compared with that in the lipid pool. An increase of 100% of calcification area leads to a 15% stress increase in the fibrous cap. Calcification in the lipid pool does not increase fibrous cap stress when it is distant to the fibrous cap, whilst large areas of calcification close to or in the fibrous cap may lead to a high stress concentration within the fibrous cap, which may cause plaque rupture. This study highlights the application of a computational model on a simulation of clinical problems, and it may provide insights into the mechanism of plaque rupture.
Resumo:
Adenine nucleotides and their related compounds were determined in muscle extracts from two species of fish that were stored in ice after thawing. The fish were the closely related species, Australian barramundi (Lates calcarifer ) and Kenyan Nile perch (Lates niloticus ) which had different process histories. For all samples, adenine nucleotides did not exceed 6% of the total nucleotide pool. Inosine monophosphate (IMP) decreased steadily with storage. Hypoxanthine (Hx) was the major product of adenosine triphosphate (ATP) degradation in both barramundi and Nile perch, showing a steady increase with days of iced storage. The Hx level did not reach a maximum during the 9d storage period. The K-value also increased regularly with time of storage and for the later stages (i.e., 7 and 9d) and was significantly different (P < 0.01) for the two species. The iced storage life of these typical samples of barramundi and Nile perch was estimated to be 3d after thawing using a K-value of < 30% to indicate excellent quality. Despite the differences in process history the nucleotide profiles were remarkably similar during storage. This precludes the use of nucleotide levels as a means of differentiating between these species.
Resumo:
SUMMARY Seasonal conditions in the pre to post natal period and selected periods before and during wool growth were described using climatic measures and estimates of the quality and quantity of pasture on offer derived from a validated pasture production model (GRASP). The variation in greasy and clean fleece weight, yield, staple length, fibre diameter, neck and side wrinkle score of Merinos grazing Mitchell grass in north west Queensland was explained in terms of these pasture and climatic measures and animal characteristics such as reproductive status, age and skin area. Multiple regression equations predicting clean and greasy fleece weight from the proportion of days in the wool growth period that the green pool in the pasture was less than one kg/ha, the percentage utilisation of the pasture, age, reproductive status and skin area of the ewes explained 87% and 79% of the variation respectively. Equations with similar predictors explained 58-85% of the variation of the other components. The inclusion of pasture conditions in the pre to post natal period did not significantly improve the predictions of the animal’s later performance. 22nd Biennial Conference.
Resumo:
Background Guidelines and clinical practice for the prevention of complications associated with central venous catheters (CVC) around the world vary greatly. Most institutions recommend the use of heparin to prevent occlusion, however there is debate regarding the need for heparin and evidence to suggest 0.9% sodium chloride (normal saline) may be as effective. The use of heparin is not without risk, may be unnecessary and is also associated with increased cost. Objectives To assess the clinical effects (benefits and harms) of intermittent flushing of heparin versus normal saline to prevent occlusion in long term central venous catheters in infants and children. Search Methods The Cochrane Vascular Trials Search Co-ordinator searched the Specialised Register (last searched April 2015) and the Cochrane Register of Studies (Issue 3, 2015). We also searched the reference lists of retrieved trials. Selection criteria Randomised controlled trials that compared the efficacy of normal saline with heparin to prevent occlusion of long term CVCs in infants and children aged up to 18 years of age were included. We excluded temporary CVCs and peripherally inserted central catheters (PICC). Data Collection and Analysis Two review authors independently assessed trial inclusion criteria, trial quality and extracted data. Rate ratios were calculated for two outcome measures - occlusion of the CVC and central line-associated blood stream infection. Other outcome measures included duration of catheter placement, inability to withdraw blood from the catheter, use of urokinase or recombinant tissue plasminogen, incidence of removal or re-insertion of the catheter, or both, and other CVC-related complications such as dislocation of CVCs, other CVC site infections and thrombosis. Main Results Three trials with a total of 245 participants were included in this review. The three trials directly compared the use of normal saline and heparin, however, between studies, all used different protocols for the standard and experimental arms with different concentrations of heparin and different frequency of flushes reported. In addition, not all studies reported on all outcomes. The quality of the evidence ranged from low to very low because there was no blinding, heterogeneity and inconsistency between studies was high and the confidence intervals were wide. CVC occlusion was assessed in all three trials (243 participants). We were able to pool the results of two trials for the outcomes of CVC occlusion and CVC-associated blood stream infection. The estimated rate ratio for CVC occlusion per 1000 catheter days between the normal saline and heparin group was 0.75 (95% CI 0.10 to 5.51, two studies, 229 participants, very low quality evidence). The estimated rate ratio for CVC-associated blood stream infection was 1.48 (95% CI 0.24 to 9.37, two studies, 231 participants; low quality evidence). The duration of catheter placement was reported to be similar between the two study arms, in one study (203 participants). Authors' Conclusions The review found that there was not enough evidence to determine the effects of intermittent flushing of heparin versus normal saline to prevent occlusion in long term central venous catheters in infants and children. Ultimately, if this evidence were available, the development of evidenced-based clinical practice guidelines and consistency of practice would be facilitated.
Resumo:
The Turku castle, founded c. 1300, has changed over the centuries from a medieval defensive structure into a Renaissance palace and from a derelict jailhouse in the late 19th century into a prime example of the Medieval built heritage in Finland. Today, it is first and foremost a monument to the Medieval and Renaissance heyday of the castle. This is apparent in the architectural forms that have been carefully restored and reconstructed. It also becomes clear in all kinds of narratives, both visual (like the set of miniatures about the different stages of the construction of the castle) and textual (as during the guided tours). For the first time in the architectural history of the Turku castle, the Medieval, the Renaissance, the Modern, and the Present as architecturally constructed or reconstructed spaces can all be visited within the same hour. As a result, the monumental Turku castle may even be deemed anachronistic or inauthentic. In this study I look at the ways in which the Turku castle is, indeed, anachronistic and inauthentic. My main objective, however, is to find ways in which the anachronisms and inauthenticities are overcome in a positive way. I base my analysis of the Turku castle on three theoretical standpoints. First, I am studying the castle as space, described by Michel de Certeau as a practiced place (de Certeau 2002). Second, I am approaching the numerous narrative aspects of the castle following Paul Ricoeur s analysis of narrative as a threefold mimetic process (Ricoeur 1990). From these two theoretical settings I have summoned the concept of narrative space. The life and work at the castle are based on expectations and understandings of the historical surroundings. My third theoretical choice is to study this applied knowledge of the place as the management of blocks of knowledge in communication (Robert de Beaugrande 1980). Combining the theoretical starting points of space and narrative , I am approaching the castle as if it were an evolving set of narratives, narrated in space but also through space. Seeing e.g. the restoration teams of the mid-20th century and the present day tour guides as creative narrators, I am looking beyond the dilemma of the anachronistic spaces. What transpires is an inter-connected web of texts and spaces, tangible and intangible narratives. My analytical key to these narrative relationships is the threefold mimetic process of pre-figuration, con-figuration, and re-figuration, inspired by the writings of Paul Ricoeur (1990). This way, the past can be seen as a pool of endless possibilities to emplot place, time, and action into a narrative space. The narratives convey images of the past that may be contested by other images, and the power to narrate in the first place can be challenged and re-distributed.
Resumo:
Reliability of supply of feed grain has become a high priority issue for industry in the northern region. Expansion by major intensive livestock and industrial users of grain, combined with high inter-annual variability in seasonal conditions, has generated concern in the industry about reliability of supply. This paper reports on a modelling study undertaken to analyse the reliability of supply of feed grain in the northern region. Feed grain demand was calculated for major industries (cattle feedlots, pigs, poultry, dairy) based on their current size and rate of grain usage. Current demand was estimated to be 2.8Mt. With the development of new industrial users (ethanol) and by projecting the current growth rate of the various intensive livestock industries, it was estimated that demand would grow to 3.6Mt in three years time. Feed grain supply was estimated using shire scale yield prediction models for wheat and sorghum that had been calibrated against recent ABS production data. Other crops that contribute to a lesser extent to the total feed grain pool (barley, maize) were included by considering their production relative to the major winter and summer grains, with estimates based on available production records. This modelling approach allowed simulation of a 101-year time series of yield that showed the extent of the impact of inter-annual climate variability on yield levels. Production estimates were developed from this yield time series by including planted crop area. Area planted data were obtained from ABS and ABARE records. Total production amounts were adjusted to allow for any export and end uses that were not feed grain (flour, malt etc). The median feed grain supply for an average area planted was about 3.1Mt, but this varied greatly from year to year depending on seasonal conditions and area planted. These estimates indicated that supply would not meet current demand in about 30% of years if a median area crop were planted. Two thirds of the years with a supply shortfall were El Nino years. This proportion of years was halved (i.e. 15%) if the area planted increased to that associated with the best 10% of years. Should demand grow as projected in this study, there would be few years where it could be met if a median crop area was planted. With area planted similar to the best 10% of years, there would still be a shortfall in nearly 50% of all years (and 80% of El Nino years). The implications of these results on supply/demand and risk management and investment in research and development are briefly discussed.