1000 resultados para POLYMER SYNTHESES
Resumo:
A new numerical model for transient flows of polymer solution in a circular bounded composite formation is presented in this paper. Typical curves of the wellbore transient pressure are yielded by FEM. The effects of non-Newtonian power-law index, mobility and boundary distance have been considered. It is found that for the mobility ratio larger than 1, which is favorable for the polymer flooding, the pressure derivative curve in log-log form rises up without any hollow. On the other hand, if the pressure derivative curve has a hollow and then is raised up, we say that the polymer flooding fails. Finally, the new model has been extended to more complicated boundary case.
Resumo:
The design and development of a plastic optical fiber (POF) macrobend temperature sensor is presented. The sensor has a linear response versus temperature at a fixed bend radius, with a sensitivity of 1.92.10(-3) (degrees C)(-1). The sensor system used a dummy fiber-optic sensor for reference purposes having a resolution below 0.3 degrees C. A comprehensive experimental analysis was carried out to provide insight into the effect of different surrounding media on practical macro-bend POF sensor implementation. Experimental results are successfully compared with bend loss calculations.
Resumo:
Polymer optical fibers (POFs) doped with organic dyes can be used to make efficient lasers and amplifiers due to the high gains achievable in short distances. This paper analyzes the peculiarities of light amplification in POFs through some experimental data and a computational model capable of carrying out both power and spectral analyses. We investigate the emission spectral shifts and widths and on the optimum signal wavelength and pump power as functions of the fiber length, the fiber numerical aperture and the radial distribution of the dopant. Analyses for both step-index and graded-index POFs have been done.
Resumo:
A novel self-referencing fiber optic intensity sensor based on bending losses of a partially polished polymer optical fiber (POF) coupler is presented. The coupling ratio (K) depends on the external liquid in which the sensor is immersed. It is possible to distinguish between different liquids and to detect their presence. Experimental results for the most usual liquids found in industry, like water and oil, are given. K value increases up to 10% from the nominal value depending on the liquid. Sensor temperature dependence has also been studied for a range from 25 degrees C (environmental condition) to 50 degrees C. Any sector requiring liquid level measurements in flammable atmospheres can benefit from this intrinsically safe technology.
Resumo:
Carbon nanotubes have unprecedented mechanical properties as defect-free nanoscale building blocks, but their potential has not been fully realized in composite materials due to weakness at the interfaces. Here we demonstrate that through load-transfer-favored three-dimensional architecture and molecular level couplings with polymer chains, true potential of CNTs can be realized in composites as Initially envisioned. Composite fibers with reticulate nanotube architectures show order of magnitude improvement in strength compared to randomly dispersed short CNT reinforced composites reported before. The molecular level couplings between nanotubes and polymer chains results in drastic differences in the properties of thermoset and thermoplastic composite fibers, which indicate that conventional macroscopic composite theory falls to explain the overall hybrid behavior at nanoscale.
Resumo:
In order to expand our understanding of the mechanism of stereocontrol in syndiospecific α-olefin polymerization, a family of Cs-symmetric, ansa-group 3 metallocenes was targeted as polymerization catalysts. The syntheses of new ansa-yttrocene and scandocene derivatives that employ the doubly [SiMe2]- bridged ligand array (1,2-SiMe2)2{C5H-3,5-(CHMe2)2} (where R = t- butyl, tBuThp; where R = i-propyl, iPrThp) are described. The structures of tBuThpY(µ-Cl)2K(THF)2, tBuThpSc(µ-Cl)2K(Et2O)2, tBuThpYCH(SiMe3)2, Y2{µ2-(tBuThp)2}(µ2-H)2, and tBuThpSc(µ-CH3)2 have been examined by single crystal X-ray diffraction methods. Ansa-yttrocenes and scandocenes that incorporate the singly [CPh2]-bridged ligand array (CPh2)(C5H4)(C13H8)(where C5H4 = Cp, cyclopentadienyl; where C13H8 = Flu, fluourenyl) have also been prepared. Select meallocene alkyl complexes are active single component catalysts for homopolymerization of propylene and 1-pentene. The scandocene tetramethylaluminate complexes generate polymers with the highes molecular weights of the series. Under all conditions examined atactic polymer microstructures are observed, suggesting a chain-end mechanism for stereocontrol.
A series of ansa-tantalocenes have been prepared as models for Ziegler-Natta polymerization catalysts. A singly bridged ansa-tantalocene trimethyl complex, Me2Si(η5-C5H4)2TaMe3, has been prepared and used for the synthesis of a tantalocene ethylene-methyl complex. Addition of propylene to this ethylene-methyl adduct results in olefin exchange to give a mixture of endo and exo propylene isomers. Doubly-silylene bridged ansa-tantalocene complexes have been prepared with the tBuThp ligand; a tantalocene trimethyl complex and a tantalocene methylidene-methyl complex have been synthesized and characterized by X-ray diffraction. Thermolysis of the methylidene-methyl complex affords the corresponding ethylene-hydride complex. Addition of either propylene or styrene to this ethylene-hydride compound results in olefin exchange. In both cases, only one product isomer is observed. Studies of olefin exchange with ansa-tantalocene olefin-hydride and olefin-methyl complexes have provided information about the important steric influences for olefin coordination in Ziegler-Natta polymerization.
Resumo:
The diterpenoid constituents of the Isodon plants have attracted reasearchers interested in both their chemical structures and biological properties for more than a half-century. In recent years, the isolations of new members displaying previously unprecedented ring systems and highly selective biological properties have piqued interest from the synthetic community in this class of natural products.
Reported herein is the first total synthesis of such a recently isolated diterpenoid, (–)-maoecrystal Z. The principal transformations implemented in this synthesis include two highly diastereoselective radical cyclization reactions: a Sm(II)-mediated reductive cascade cyclization, which forms two rings and establishes four new stereocenters in a single step, and a Ti(III)-mediated reductive epoxide-acrylate coupling that yields a functionalized spirolactone product, which forms a core bicycle of maoecrystal Z.
The preparation of two additional ent-kauranoid natural products, (–)-trichorabdal A and (–)-longikaurin E, is also described from a derivative of this key spirolactone. These syntheses are additionally enabled by the palladium-mediated oxidative cyclization reaction of a silyl ketene acetal precursor that is used to install the bridgehead all-carbon quaternary stereocenter and bicyclo[3.2.1]octane present in each natural product. These studies have established a synthetic relationship among three architecturally distinct ent-kaurane diterpenoids and have forged a path for the preparation of interesting unnatural ent-kauranoid structural analogs for more thorough biological study.
Resumo:
The asymmetric synthesis of quaternary stereocenters remains a challenging problem in organic synthesis. Past work from the Stoltz laboratory has resulted in methodology to install quaternary stereocenters α- or γ- to carbonyl compounds. Thus, the asymmetric synthesis of β-quaternary stereocenters was a desirable objective, and was accomplished by engineering the palladium-catalyzed addition of arylmetal organometallic reagents to α,β-unsaturated conjugate acceptors.
Herein, we described the rational design of a palladium-catalyzed conjugate addition reactions utilizing a catalyst derived from palladium(II) trifluoroacetate and pyridinooxazole ligands. This reaction is highly tolerant of protic solvents and oxygen atmosphere, making it a practical and operationally simple reaction. The mild conditions facilitate a remarkably high functional group tolerance, including carbonyls, halogens, and fluorinated functional groups. Furthermore, the reaction catalyzed conjugate additions with high enantioselectivity with conjugate acceptors of 5-, 6-, and 7-membered ring sizes. Extension of the methodology toward the asymmetric synthesis of flavanone products is presented, as well.
A computational and experimental investigation into the reaction mechanism provided a stereochemical model for enantioinduction, whereby the α-methylene protons adjacent the enone carbonyl clashes with the tert-butyl groups of the chiral ligand. Additionally, it was found that the addition of water and ammonium hexafluorophosphate significantly increases the reaction rate without sacrificing enantioselectivity. The synergistic effects of these additives allowed for the reaction to proceed at a lower temperature, and thus facilitated expansion of the substrate scope to sensitive functional groups such as protic amides and aryl bromides. Investigations into a scale-up synthesis of the chiral ligand (S)-tert-butylPyOx are also presented. This three-step synthetic route allowed for synthesis of the target compound of greater than 10 g scale.
Finally, the application of the newly developed conjugate addition reaction toward the synthesis of the taiwaniaquinoid class of terpenoid natural products is discussed. The conjugate addition reaction formed the key benzylic quaternary stereocenter in high enantioselectivity, joining together the majority of the carbons in the taiwaniaquinoid scaffold. Efforts toward the synthesis of the B-ring are presented.
Resumo:
The influence upon the basic viscous flow about two axisymmetric bodies of (i) freestream turbulence level and (ii) the injection of small amounts of a drag-reducing polymer (Polyox WSR 301) into the test model boundary layer was investigated by the schlieren flow visualization technique. The changes in the type and occurrence of cavitation inception caused by the subsequent modifications in the viscous flow were studied. A nuclei counter using the holographic technique was built to monitor freestream nuclei populations and a few preliminary tests investigating the consequences of different populations on cavitation inception were carried out.
Both test models were observed to have a laminar separation over their respective test Reynolds number ranges. The separation on one test model was found to be insensitive to freestream turbulence levels of up to 3.75 percent. The second model was found to be very susceptible having its critical velocity reduced from 30 feet per second at a 0.04 percent turbulence level to 10 feet per second at a 3.75 percent turbulence level. Cavitation tests on both models at the lowest turbulence level showed the value of the incipient cavitation number and the type of cavitation were controlled by the presence of the laminar separation. Cavitation tests on the second model at 0.65 percent turbulence level showed no change in the inception index, but the appearance of the developed cavitation was altered.
The presence of Polyox in the boundary layer resulted in a cavitation suppression comparable to that found by other investigators. The elimination of the normally occurring laminar separation on these bodies by a polymer-induced instability in the laminar boundary layer was found to be responsible for the suppression of inception.
Freestream nuclei populations at test conditions were measured and it was found that if there were many freestream gas bubbles the normally present laminar separation was elminated and travelling bubble type cavitation occurred - the value of the inception index then depended upon the nuclei population. In cases where the laminar separation was present it was found that the value of the inception index was insensitive to the free stream nuclei populations.
Resumo:
Herein are described the total syntheses of all members of the transtaganolide and basiliolide natural product family. Utilitzation of an Ireland–Claisen rearrangement/Diels–Alder cycloaddition cascade (ICR/DA) allowed for rapid assembly of the transtaganolide and basiliolide oxabicyclo[2.2.2]octane core. This methodology is general and was applicable to all members of the natural product family.
A brief introduction outlines all the synthetic progress previously disclosed by Lee, Dudley, and Johansson. This also includes the initial syntheses of transtaganolides C and D, as well as basiliolide B and epi-basiliolide B accomplished by Stoltz in 2011. Lastly, we discuss our racemic synthesis of basililide C and epi-basiliolide C, which utilized an ICR/DA cascade to constuct the oxabicyclo[2.2.2]octane core and formal [5+2] annulation to form the ketene-acetal containing 7-membered C-ring.
Next, we describe a strategy for an asymmetric ICR/DA cascade, by incorporation of a chiral silane directing group. This allowed for enantioselective construction of the C8 all-carbon quaternary center formed in the Ireland–Claisen rearrangement. Furthermore, a single hydride reduction and subsequent translactonization of a C4 methylester bearing oxabicyclo[2.2.2]octane core demonstrated a viable strategy for the desired skeletal rearrangement to obtain pentacyclic transtaganolides A and B. Application of the asymmetric strategy culminated in the total syntheses of (–)-transtaganolide A, (+)-transtaganolide B, (+)-transtaganolide C, and (–)-transtaganolide D. Comparison of the optical rotation data of the synthetically derived transtaganolides to that from the isolated counterparts has overarching biosynthetic implications which are discussed.
Lastly, improvement to the formal [5+2] annulation strategy is described. Negishi cross-coupling of methoxyethynyl zinc chloride using a palladium Xantphos catalyst is optimized for iodo-cyclohexene. Application of this technology to an iodo-pyrone geranyl ester allowed for formation and isolation of the eneyne product. Hydration of the enenye product forms natural metabolite basiliopyrone. Furthermore, the eneyne product can undergo an ICR/DA cascade and form transtaganolides C and D in a single step from an achiral monocyclic precursor.