857 resultados para POLLINATION MECHANISMS
Resumo:
Arthropods exhibit a large variety of sex determination systems both at the chromosomal and molecular level. Male heterogamety, female heterogamety, and haplodiploidy occur frequently, but partially different genes are involved. Endosymbionts, such as Wolbachia, Cardinium,Rickettsia, and Spiroplasma, can manipulate host reproduction and sex determination. Four major reproductive manipulation types are distinguished: cytoplasmic incompatibility, thelytokous parthenogenesis, male killing, and feminization. In this review, the effects of these manipulation types and how they interfere with arthropod sex determination in terms of host developmental timing, alteration of sex determination, and modification of sexual differentiation pathways are summarized. Transitions between different manipulation types occur frequently which suggests that they are based on similar molecular processes. It is also discussed how mechanisms of reproductive manipulation and host sex determination can be informative on each other, with a special focus on haplodiploidy. Future directions on how the study of endosymbiotic manipulation of host reproduction can be key to further studies of arthropod sex determination are shown.
Resumo:
Cardiac hypertrophy is a complex remodeling process of the heart induced by physiological or pathological stimuli resulting in increased cardiomyocyte size and myocardial mass. Whereas cardiac hypertrophy can be an adaptive mechanism to stressful conditions of the heart, prolonged hypertrophy can lead to heart failure which represents the primary cause of human morbidity and mortality. Among G protein-coupled receptors, the α1-adrenergic receptors (α1-ARs) play an important role in the development of cardiac hypertrophy as demonstrated by numerous studies in the past decades, both in primary cardiomyocyte cultures and genetically modified mice. The results of these studies have provided evidence of a large variety of α1-AR-induced signaling events contributing to the defining molecular and cellular features of cardiac hypertrophy. Recently, novel signaling mechanisms have been identified and new hypotheses have emerged concerning the functional role of the α1-adrenergic receptors in the heart. This review will summarize the main signaling pathways activated by the α1-AR in the heart and their functional implications in cardiac hypertrophy.
Resumo:
Antifungal therapy is a central component of patient management for acute and chronic mycoses. Yet, treatment choices are restricted because of the sparse number of antifungal drug classes. Clinical management of fungal diseases is further compromised by the emergence of antifungal drug resistance, which eliminates available drug classes as treatment options. Once considered a rare occurrence, antifungal drug resistance is on the rise in many high-risk medical centers. Most concerning is the evolution of multidrug- resistant organisms refractory to several different classes of antifungal agents, especially among common Candida species. The mechanisms responsible are mostly shared by both resistant strains displaying inherently reduced susceptibility and those acquiring resistance during therapy. The molecular mechanisms include altered drug affinity and target abundance, reduced intracellular drug levels caused by efflux pumps, and formation of biofilms. New insights into genetic factors regulating these mechanisms, as well as cellular factors important for stress adaptation, provide a foundation to better understand the emergence of antifungal drug resistance.
Resumo:
Post-translational protein modifications are crucial for many fundamental cellular and extracellular processes and greatly contribute to the complexity of organisms. Human HCF-1 is a transcriptional co-regulator that undergoes complex protein maturation involving reversible and irreversible post-translational modifications. Upon synthesis as a large precursor protein, HCF-1 undergoes extensive reversible glycosylation with β-N-acetylglucosamine giving rise to O-linked-β-N-acetylglucosamine (O-GlcNAc) modified serines and threonines. HCF-1 also undergoes irreversible site-specific proteolysis, which is important for one of HCF-1's major functions - the regulation of the cell-division cycle. HCF-1 O-GlcNAcylation and site-specific proteolysis are both catalyzed by a single enzyme with an unusual dual enzymatic activity, the O-GlcNAc transferase (OGT). HCF-1 is cleaved by OGT at any of six highly conserved 26 amino acid repeated sequences (HCF-1PRO repeats), but the mechanisms and the substrate requirements for OGT-mediated cleavage are not understood. In the present work, I characterized substrate requirements for OGT-mediated cleavage and O-GlcNAcylation of HCF-1. I identified key elements within the HCF-1PRO-repeat sequence that are important for proteolysis. Remarkably, an invariant single amino acid side-chain within the HCF-1PRO-repeat sequence displays particular OGT-binding properties and is essential for proteolysis. Additionally, I characterized substrate requirements for proteolysis outside of the HCF-1PRO repeat and identified a novel, highly O-GlcNAcylated OGT-binding sequence that enhances cleavage of the first HCF-1PRO repeat. These results link OGT association and its O-GlcNAcylation activities to HCF-1PRO-repeat proteolysis.
Resumo:
PURPOSE OF REVIEW: To provide an overview of available evidence of the potential role of epigenetics in the pathogenesis of hypertension and vascular dysfunction. RECENT FINDINGS: Arterial hypertension is a highly heritable condition. Surprisingly, however, genetic variants only explain a tiny fraction of the phenotypic variation and the term 'missing heritability' has been coined to describe this phenomenon. Recent evidence suggests that phenotypic alteration that is unrelated to changes in DNA sequence (thereby escaping detection by classic genetic methodology) offers a potential explanation. Here, we present some basic information on epigenetics and review recent work consistent with the hypothesis of epigenetically induced arterial hypertension. SUMMARY: New technologies that enable the rigorous assessment of epigenetic changes and their phenotypic consequences may provide the basis for explaining the missing heritability of arterial hypertension and offer new possibilities for treatment and/or prevention.
Resumo:
This study aims at understanding the evolutionary processes at work in specialized species interactions. Prom the macroevolutionary perspective, coevolution among specialized taxa was proposed to be one of the major processes generating biodiversity. We challenge this idea from the theoretical and practical perspective and through a literature review and show that the major hypotheses linking coevolutionary process with macroevolutionary patterns do not necessarily predict lineage co diversification and parallel speciation, limit¬ing the utility of the comparative phylogenenetic approach for investigating coevolution¬ary processes. We also point to the rarity of observed long-term coevolutionary dynamics among lineages and propose that coevolution rather occurs in shorter timescales, followed by ecological fitting. Prom the empirical point, we focus on the nursery pollination interaction between the European globeflower Trollius europaeus (Ranunculaceae) and its associated Chiastocheta flies (Anthomyiidae; Diptera) as a model system of evolution and maintenance of special¬ized interactions. The flies are obligate parasites of the seeds, but also pollinate the plant - it was thus proposed that both species are mutually dependent. Contrasting with the paradigm used for two decades of research on this system, we show that the female fitness component of the plant is similar in the populations with and without Chiastocheta. The plant is thus not exclusively dependent on the flies for reproduction. We discuss this result in the context of the factors responsible for the evolution of mutualistic systems. Understanding the evolution of a biological system requires understanding of its phylo- genetic context. Previous studies showed large mismatch between mtDNA phylogeny and morphological taxonomy in Chiastocheta. By using a large set of RAD-sequencing loci, we delineate the species limits that are congruent with morphology, and show that the discordance is best explained by the scenario of mitochondrial capture among fly species. Finally, we examine this system from a phylogeographic perspective, and identify the lack of congruence in spatial genetic structures of the plant and associated insects across their whole geographic range. The flies show lower numbers of spatial genetic groups than the plant, indicating that not all of the plant réfugia were shared by all the fly species or that the migration dynamics homogenized some of the groups. The incongruence in spatial genetic patterns indicates that fly migrations were largely independent from the genetic background of the plant, following rather a scenario of resource tracking, without the signature of coevolutionary process at this scale. Indeed, while the flies require the plant to survive climatic oscillations, the opposite is not true. Eventually, we show that there is no phylogenetic signal of spatial genetic structures, meaning that neither histories nor life- history traits are shared among closely related species and that species are characterized by unique trajectories of their genes. -- Cette étude vise à comprendre les processus évolutifs à l'oeuvre au sein d'interactions en¬tre espèces spécialisées. Du point de vue macroévolutif, la coévolution entre les taxons spécialisée a été considérée comme l'un des principaux processus générateur de biodiversité. Nous contestons cette idée du point de vue théorique et pratique à travers une revue de la littérature. Nous montrons que les hypothèses majeures reliant les processus coévolutifs avec les patterns de diversité au niveau macroévolutif ne prédisent pas nécessairement la co- diversification des lignées et leur spéciation parallèle, ce qui limite l'utilité de l'approche de phylogénie comparative pour étudier les processus coévolutifs . Nous rappelons également le peu d'exemples de dynamique coévolutive à long terme et proposons que la coévolution se produit plutôt dans des intervalles courts, suivis d'ajustements écologiques. Du point empirique, nous nous concentrons sur l'interaction de pollinisation entre le Trolle d'Europe Trollius europaeus (Ranunculaceae) et ses pollinisateurs associés, du genre Chiastocheta (Anthomyiidae; Diptera) en tant que système-modèle pour étudier l'évolution et le maintien des interactions spécialisées. Les mouches sont des parasites obligatoires des semences, mais pollinisent également la plante. Il a donc été proposé que les deux espèces soient mutuellement dépendantes. Contrastant avec le paradigme utilisé pendant deux décennies de recherche sur ce système, nous montrons, que la composante de fitness femelle de la plante est similaire dans les populations avec et sans Chiastocheta. La plante ne dépend donc pas exclusivement de son interaction avec les mouches pour la reproduction. Nous discutons de ce résultat dans le contexte des facteurs responsables de l'évolution des systèmes mutualistes. Comprendre l'évolution d'un système biologique nécessite la compréhension de son con- texte phylogénétique. Des études antérieures ont montré, chez Chiastocheta, de grandes disparités entre les phylogénies obtenues à partir d'ADN mitochondrial et la taxonomie basée sur les critères morphologiques. En utilisant un grand nombre de loci obtenus par RAD-sequencing, nous traçons les limites des espèces, qui concordent avec les car¬actéristiques morphologies, et montrons que la discordance s'explique en fait par un scénario de capture mitochondriale entre espèces de mouches. Enfin, nous examinons le système d'un point de vue phylogéographique, et identi¬fions les incohérences entre structurations génétiques spatiales de la plante et des insectes associés dans toute leur aire de distribution géographique. Les mouches présentent un nombre de groupes génétiques inférieur à la plante, indiquant que tous les refuges de la plante n'étaient pas partagés par toutes les espèces de mouches ou que les dynamiques migratoires ont homogénéisés certains des groupes chez les mouches. Les différences ob¬servées dans les patrons de structuration génétique spatiale indique que les migrations et dispersions des mouches ont été indépendantes du contexte génétique de la plante, et ces dernières ont été uniquement tributaires de la disponibilité des ressources, sans qu'il n'y ait de signature du processus de coévolution à cette échelle. En effet, tandis que les mouches ont besoin de la plante pour survivre aux oscillations climatiques, le contraire n'est pas exact. Finalement, nous montrons qu'il n'y a pas de signal phylogénétique des structurations génétiques spatiales chez les mouches, ce qui signifie que ni l'histoire, ni les traits d'histoire de vie ne sont partagés entre les espèces phylogénétiquement proches et que les espèces sont caractérisées par des trajectoires uniques de leurs gènes.
Resumo:
The mutualistic versus antagonistic nature of an interaction is defined by costs and benefits of each partner, which may vary depending on the environment. Contrasting with this dynamic view, several pollination interactions are considered as strictly obligate and mutualistic. Here, we focus on the interaction between Trollius europaeus and Chiastocheta flies, considered as a specialized and obligate nursery pollination system - the flies are thought to be exclusive pollinators of the plant and their larvae develop only in T.europaeus fruits. In this system, features such as the globelike flower shape are claimed to have evolved in a coevolutionary context. We examine the specificity of this pollination system and measure traits related to offspring fitness in isolated T.europaeus populations, in some of which Chiastocheta flies have gone extinct. We hypothesize that if this interaction is specific and obligate, the plant should experience dramatic drop in its relative fitness in the absence of Chiastocheta. Contrasting with this hypothesis, T.europaeus populations without flies demonstrate a similar relative fitness to those with the flies present, contradicting the putative obligatory nature of this pollination system. It also agrees with our observation that many other insects also visit and carry pollen among T.europaeus flowers. We propose that the interaction could have evolved through maximization of by-product benefits of the Chiastocheta visits, through the male flower function, and selection on floral traits by the most effective pollinator. We argue this mechanism is also central in the evolution of other nursery pollination systems.
Resumo:
Previous studies have shown that rat intestinal immunoglobulin A (IgA) concentration and lymphocyte composition of the intestinal immune system were influenced by a highly enriched cocoa diet. The aim of this study was to dissect the mechanisms by which a long-term high cocoa intake was capable of modifying gut secretory IgA in Wistar rats. After 7 weeks of nutritional intervention, Peyer's patches, mesenteric lymph nodes and the small intestine were excised for gene expression assessment of IgA, transforming growth factor ß, C-C chemokine receptor-9 (CCR9), interleukin (IL)-6, CD40, retinoic acid receptors (RAR¿ and RARß), C-C chemokine ligand (CCL)-25 and CCL28 chemokines, polymeric immunoglobulin receptor and toll-like receptors (TLR) expression by real-time polymerase chain reaction. As in previous studies, secretory IgA concentration decreased in intestinal wash and fecal samples after cocoa intake. Results from the gene expression showed that cocoa intake reduced IgA and IL¿6 in Peyer's patches and mesenteric lymph nodes, whereas in small intestine, cocoa decreased IgA, CCR9, CCL28, RAR¿ and RARß. Moreover, cocoa-fed animals presented an altered TLR expression pattern in the three compartments studied. In conclusion, a high-cocoa diet down-regulated cytokines such as IL-6, which is required for the activation of B cells to become IgA-secreting cells, chemokines and chemokine receptors, such as CCL28 and CCR9 together with RAR¿ and RARß, which are involved in the gut homing of IgA-secreting cells. Moreover, cocoa modified the cross-talk between microbiota and intestinal cells as was detected by an altered TLR pattern. These overall effects in the intestine may explain the intestinal IgA down-regulatory effect after the consumption of a long-term cocoa-enriched diet.
Resumo:
Proteases are important for regulating multiple tumorigenic processes, including angiogenesis, tumor growth, and invasion. Elevated protease expression is associated with poor patient prognosis across numerous tumor types. Several multigene protease families have been implicated in cancer, including cysteine cathepsins. However, whether individual family members have unique roles or are functionally redundant remains poorly understood. Here we demonstrate stage-dependent effects of simultaneously deleting cathepsin B (CtsB) and CtsS in a murine pancreatic neuroendocrine tumor model. Early in tumorigenesis, the double knockout results in an additive reduction in angiogenic switching, whereas at late stages, several tumorigenic phenotypes are unexpectedly restored to wild-type levels. We identified CtsZ, which is predominantly supplied by tumor-associated macrophages, as the compensatory protease that regulates the acquired tumor-promoting functions of lesions deficient in both CtsB and CtsS. Thus, deletion of multiple cathepsins can lead to stage-dependent, compensatory mechanisms in the tumor microenvironment, which has potential implications for the clinical consideration of selective versus pan-family cathepsin inhibitors in cancer.
Resumo:
It is well established that cytotoxic T lymphocytes play a pivotal role in the protection against intracellular pathogens and tumour cells. Such protective immune responses rely on the specific T cell receptor (TCR)-mediated recognition by CD8 T cells of small antigenic peptides presented in the context of class-I Major Histocompatibility Complex molecules (pMHCs) on the surface of infected or malignant cells. The strength (affinity/avidity) of this interaction is a major correlate of protection. Although tumour-reactive CD8 T cells can be observed in cancer patients, anti-tumour immune responses are often ineffective in controlling or eradicating the disease due to the relative low TCR affinity of these cells. To overcome this limitation, tumour-specific CD8 T cells can be genetically modified to express TCRs of improved binding strength against a defined tumour antigen before adoptive cell transfer into cancer patients. We previously generated a panel of TCRs specific for the cancer-testis antigen NY-ESO-l,57.165 with progressively increased affinities for the pMHC complex, thus providing us with a unique tool to investigate the causal link between the surface expression of such TCRs and T cell activation and function. We recently demonstrated that anti-tumour CD8 T cell reactivity could only be improved within physiological affinity limits, beyond which drastic functional declines were observed, suggesting the presence of multiple regulatory mechanisms limiting T cell activation and function in a TCR affinity-dependent manner. The overarching goal of this thesis was (i) to assess the precise impact of TCR affinity on T cell activation and signalling at the molecular level and (ii) to gain further insights on the mechanisms that regulate and delimitate maximal/optimized CD8 T cell activation and signalling. Specifically, by combining several technical approaches we characterized the activation status of proximal (i.e. CD3Ç, Lek, and ZAP-70) and distal (i.e. ERK1/2) signalling molecules along the TCR affinity gradient. Moreover, we assessed the extent of TCR downmodulation, a critical step for initial T cell activation. CD8 T cells engineered with the optimal TCR affinity variants showed increased activation levels of both proximal and distal signalling molecules when compared to the wild-type T cells. Our analyses also highlighted the "paradoxical" status of tumour-reactive CD8 T cells bearing very high TCR affinities, which retained strong proximal signalling capacity and TCR downmodulation, but were unable to propagate signalling distally (i.e. pERKl/2), resulting in impaired cell-mediated functions. Importantly, these very high affinity T cells displayed maximal levels of SHP-1 and SHP-2 phosphatases, two negative regulatory molecules, and this correlated with a partial pERKl/2 signalling recovery upon pharmacological SHP-l/SHP-2 inhibition. These findings revealed the putative presence of inhibitory regulators of the TCR signalling cascade acting very rapidly following tumour-specific stimulation. Moreover, the very high affinity T cells were only able to transiently express enhanced proximal signalling molecules, suggesting the presence of an additional level of regulation that operates through the activation of negative feedback loops over time, limiting the duration of the TCR-mediated signalling. Overall, the determination of TCR-pMHC binding parameters eliciting optimal CD8 T cell activation, signalling, and effector function while guaranteeing high antigen specificity, together with the identification of critical regulatory mechanisms acting proximally in the TCR signalling cascade, will directly contribute to optimize and support the development of future TCR-based adoptive T cell strategies for the treatment of malignant diseases. -- Les lymphocytes T CD8 cytotoxiques jouent un rôle prédominant dans la protection contre les pathogènes intracellulaires et les cellules tumorales. Ces réponses immunitaires dépendent de la spécificité avec laquelle les récepteurs T (TCR) des lymphocytes CD8 reconnaissent les peptides antigéniques présentés par les molécules du complexe Majeur de Histocompatibilité de classe I (pCMH) à la surface des cellules infectées ou malignes. La force (ou affinité/avidité) de l'interaction du TCR-pCMH est un corrélat majeur de protection. Les réponses immunitaires sont cependant souvent inefficaces et ne permettent pas de contrôler ou d'éliminer les cellules tumorales chez les patients atteint du cancer, et ce à cause de la relative faible reconnaissance des TCRs exprimés par les lymphocytes T CD8 envers les antigènes tumoraux. Afin de surmonter cette limitation, les cellules T anti-tumorales peuvent être génétiquement modifiées en les dotant de TCRs préalablement optimisés afin d'augmenter leur reconnaissance ou affinité contre les antigènes tumoraux, avant leur ré¬infusion dans le patient. Nous avons récemment généré des cellules T CD8 exprimant un panel de TCRs spécifiques pour l'antigène tumoral NY-ESO-l157.16J avec des affinités croissantes, permettant ainsi d'investiguer la causalité directe entre l'affinité du TCR-pCMH et la fonction des cellules T CD8. Nous avons démontré que la réactivité anti-tumorale pouvait être améliorée en augmentant l'affinité du TCR dans une intervalle physiologique, mais au delà duquel nous observons un important déclin fonctionnel. Ces résultats suggèrent la présence de mécanismes de régulation limitant l'activation des cellules T de manière dépendante de l'affinité du TCR. Le but de cette thèse a été (i) de définir l'impact précis de l'affinité du TCR sur l'activation et la signalisation des cellules T CD8 au niveau moléculaire et (ii) d'acquérir de nouvelles connaissances sur les mécanismes qui régulent et délimitent l'activation et la signalisation maximale des cellules T CD8 optimisées. Spécifiquement, en combinant plusieurs approches technologiques, nous avons caractérisé l'état d'activation de différentes protéines de la voie de signalisation proximale (CD3Ç, Lek et ZAP-70) et distale (ERK1/2) le long du gradient d'affinité du TCR, ainsi que l'internalisation du TCR, une étape clef dans l'activation initiale des cellules T. Les lymphocytes T CD8 exprimant des TCRs d'affinité optimale ont montré des niveaux d'activation augmentés des molécules proximales et distales par rapport aux cellules de type sauvage (wild-type). Nos analyses ont également mis en évidence un paradoxe chez les cellules T CD8 équipées avec des TCRs de très haute affinité. En effet, ces cellules anti-tumorales sont capables d'activer leurs circuits biochimiques au niveau proximal et d'internaliser efficacement leur TCR, mais ne parviennent pas à propager les signaux biochimiques dépendants du TCR jusqu'au niveau distal (via phospho-ERKl/2), avec pour conséquence une limitation de leur capacité fonctionnelle. Finalement, nous avons démontré que SHP-1 et SHP-2, deux phosphatases avec des propriétés régulatrices négatives, étaient majoritairement exprimées dans les cellules T CD8 de très hautes affinités. Une récupération partielle des niveaux d'activation de ERK1/2 a pu être observée après l'inhibition pharmacologique de ces phosphatases. Ces découvertes révèlent la présence de régulateurs moléculaires qui inhibent le complexe de signalisation du TCR très rapidement après la stimulation anti-tumorale. De plus, les cellules T de très hautes affinités ne sont capables d'activer les molécules de la cascade de signalisation proximale que de manière transitoire, suggérant ainsi un second niveau de régulation via l'activation de mécanismes de rétroaction prenant place progressivement au cours du temps et limitant la durée de la signalisation dépendante du TCR. En résumé, la détermination des paramètres impliqués dans l'interaction du TCR-pCMH permettant l'activation de voies de signalisation et des fonctions effectrices optimales ainsi que l'identification des mécanismes de régulation au niveau proximal de la cascade de signalisation du TCR contribuent directement à l'optimisation et au développement de stratégies anti-tumorales basées sur l'ingénierie des TCRs pour le traitement des maladies malignes.
Resumo:
When emerging from the ribosomes, new polypeptides need to fold properly, eventually translocate, and then assemble into stable, yet functionally flexible complexes. During their lifetime, native proteins are often exposed to stresses that can partially unfold and convert them into stably misfolded and aggregated species, which can in turn cause cellular damage and propagate to other cells. In animal cells, especially in aged neurons, toxic aggregates may accumulate, induce cell death and lead to tissue degeneration via different mechanisms, such as apoptosis as in Parkinson's and Alzheimer's diseases and aging in general. The main cellular mechanisms effectively controlling protein homeostasis in youth and healthy adulthood are: (1) the molecular chaperones, acting as aggregate unfolding and refolding enzymes, (2) the chaperone-gated proteases, acting as aggregate unfolding and degrading enzymes, (3) the aggresomes, acting as aggregate compacting machineries, and (4) the autophagosomes, acting as aggregate degrading organelles. For unclear reasons, these cellular defences become gradually incapacitated with age, leading to the onset of degenerative diseases. Understanding these mechanisms and the reasons for their incapacitation in late adulthood is key to the design of new therapies against the progression of aging, degenerative diseases and cancers.
Resumo:
Human chorionic gonadotropin (hCG) and luteinizing hormone (LH) are structurally and functionally similar glycoprotein hormones acting through the same luteinizing hormone chorionic gonadotropin receptor (LHCGR). The functions of LH in reproduction and hCG in pregnancy are well known. Recently, the expression of LHCGR has been found in many nongonadal tissues and cancers, and this has raised the question of whether LH/hCG could affect the function or tumorigenesis of these nongonadal tissues. We have also previously generated an hCG expressing mouse model presenting nongonadal phenotypes. Using this model it is possible to improve our understanding of nongonadal action of highly elevated LH/hCG. In the current study, we analyzed the effect of moderately and highly elevated hCG levels on male reproductive development and function. The main finding was the appearance of fetal Leydig cell (FLC) adenomas in prepubertal males. However, the development and differentiation of FLCs were not significantly affected. We also show that the function of hCG is different in FLCs and in adult Leydig cells (ALC), because in the latter cells hCG was not able to induce tumorigenesis. In FLCs, LHCGR is not desensitized or downregulated upon ligand binding. In this study, we found that the testicular expression of two G protein-coupled receptor kinases responsible for receptor desensitization or downregulation is increased in adult testis. Results suggest that the lack of LHCGR desensitization or downregulation in FLCs protect testosterone (Te) synthesis, but also predispose FLCs for LH/hCG induced adenomas. However, all the hCG induced nongonadal changes observed in male mice were possible to explain by the elevated Te level found in these males. Our findings indicate that the direct nongonadal effects of elevated LH/hCG in males are not pathophysiologically significant. In female mice, we showed that an elevated hCG level was able to induce gonadal tumorigenesis. hCG also induced the formation of pituitary adenomas (PA), but the mechanism was indirect. Furthermore, we found two new potential risk factors and a novel hormonally induced mechanism for PAs. Increased progesterone (P) levels in the presence of physiological estradiol (E2) levels induced the formation of PAs in female mice. E2 and P induced the expression and nuclear localization of a known cell-cycle regulator, cyclin D1. A calorie restricted diet was also able to prevent the formation of PAs, suggesting that obesity is able to promote the formation of PAs. Hormone replacement therapy after gonadectomy and hormone antagonist therapy showed that the nongonadal phenotypes observed in hCG expressing female mice were due to ovarian hyperstimulation. A slight adrenal phenotype was evident even after gonadectomy in hCG expressing females, but E2 and P replacement was able to induce a similar phenotype in WT females without elevated LH/hCG action. In conclusion, we showed that the direct effects of elevated hCG/LH action are limited only to the gonads of both sexes. The nongonadal phenotypes observed in hCG expressing mice were due to the indirect, gonadal hormone mediated effects of elevated hCG. Therefore, the gonads are the only physiologically significant direct targets of LHCGR signalling.
Resumo:
Self-organization is a growing interdisciplinary field of research about a phenomenon that can be observed in the Universe, in Nature and in social contexts. Research on self-organization tries to describe and explain forms, complex patterns and behaviours that arise from a collection of entities without an external organizer. As researchers in artificial systems, our aim is not to mimic self-organizing phenomena arising in Nature, but to understand and to control underlying mechanisms allowing desired emergence of forms, complex patterns and behaviours. Rather than attempting to eliminate such self-organization in artificial systems, we think that this might be deliberately harnessed in order to reach desirable global properties. In this paper we analyze three forms of self-organization: stigmergy, reinforcement mechanisms and cooperation. The amplification phenomena founded in stigmergic process or in reinforcement process are different forms of positive feedbacks that play a major role in building group activity or social organization. Cooperation is a functional form for self-organization because of its ability to guide local behaviours in order to obtain a relevant collective one. For each forms of self-organisation, we present a case study to show how we transposed it to some artificial systems and then analyse the strengths and weaknesses of such an approach