842 resultados para PLASMON
Resumo:
Aggregated Au colloids have been widely used as SERS enhancing media for many years but to date there has been no systematic investigation of the effect of the particle size on the enhancements given by simple aggregated Au colloid solutions. Previous systematic studies on isolated particles in solution or multiple particles deposited onto surfaces reported widely different optimum particle sizes for the same excitation wavelength and also disagreed on the extent to which surface plasmon absorption spectra were a good predictor of enhancement factors. In this work the spectroscopic properties of a range of samples of monodisperse Au colloids with diameters ranging from 21 to 146 nm have been investigated in solution. The UV/visible absorption spectra of the colloids show complex changes as a function of aggregating salt (MgSO4) concentration which diminish when the colloid is fully aggregated. Under these conditions, the relative SERS enhancements provided by the variously sized colloids vary very significantly across the size range. The largest signals in the raw data are observed for 46 nm colloids but correction for the total surface area available to generate enhancement shows that particles with 74 nm diameter give the largest enhancement per unit surface area. The observed enhancements do not correlate with absorbance at the excitation wavelength but the large differences between differently sized colloids demonstrate that even in the randomly aggregated particle assemblies studied here, inhomogeneous broadening does not mask the underlying changes due to differences in particle diameter.
Resumo:
The complete spectrum of eigenwaves including surface plasmon polaritons (SPP), dynamic (bulk) and complex waves in the layered structures containing semiconductor and metallic films has been explored. The effects of loss, geometry and the parameters of dielectric layers on the eigenmode spectrum and, particularly, on the SPP modes have been analysed using both the asymptotic and rigorous numerical solutions of the full-wave dispersion equation. The field and Poynting vector distributions have been examined to identify the modes and elucidate their properties. It has been shown that losses and dispersion of permittivity qualitatively alter the spectral content and the eigenwave properties. The SPP counter-directional power fluxes in the film and surrounding dielectrics have been attributed to vortices of power flow, which are responsible for the distinctive features of SPP modes. It has been demonstrated for the first time that the maximal attainable slow-wave factor of the SPP modes guided by thin Au films at optical frequencies is capped not by losses but the frequency dispersion of the actual Au permittivity. © 2009 EDP Sciences.
Resumo:
Surface plasmon resonance (SPR) based biosensor technology has been widely used in life science research for many applications. While the advantages of speed, ruggedness, versatility, sensitivity and reproducibility are often quoted, many researchers have experienced severe problem of non-specific binding (NSB) to chip surfaces when performing analysis of biological samples Such as bovine serum. Using the direct measurement of the bovine protein leptin, present in bovine serum samples as a model, a unique buffering system has been developed and optimised which was able to significantly reduce the non-specific interactions of bovine serum components with the carboxymethyl dextran chip (CM5) surface on a Biacore SPR The developed NSB buffering system comprised of HBS-EP buffer, containing 0.5 M NaCl, 0.005% CM-dextran pH 9.0. An average NSB reduction (n = 20) of 85.9% and 87.3% was found on an unmodified CM5 surface and a CM5 with bovine leptin immobilised on the chip surface, respectively. A reduction in NSB of up to 94% was observed on both surfaces. The concentration of the constitutive components and pH of the buffer were crucial in achieving this outcome. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We simulate the localized surface plasmon resonances of an Au nanoparticle within tunnelling proximity of an Au substrate. The results demonstrate that the calculated resonance energies can be identified with those experimentally detected for light emission from the tip-sample junction of a scanning tunnelling microscope. Relative to the modes of an isolated nanoparticle these modes show significant red-shifting, extending further into the infrared with increasing radius, primarily due to a proximity-induced lowering of the effective bulk plasmon frequency. Spatial mapping of the field enhancement factor shows an oscillatory variation of the field, absent in the case of a dielectric substrate; also the degree of localization of the modes, and thus the resolution achievable electromagnetically, is shown to depend primarily on the nanoparticle radius, which is only weakly dependent on wavelength.
Resumo:
Electromagnetic radiation originating with localized surface plasmons in the metal-tip/metal-sample nanocavity of a scanning tunneling microscope is demonstrated to extend to a wavelength lambda of at least 1.7 mu m. Progressive spectral extension beyond lambda similar to 1.0 mu m occurs for increasing tip radius above similar to 15 nm, reaching lambda similar to 1.7 mu m for tip radius similar to 100 nm; these observations are corroborated by use of a simple physical model that relates the discrete plasmon mode frequencies to the tip radius. This spectral extension opens up a new regime for scanning tunneling microscope-based optical spectroscopy.
Resumo:
Light transmission through a single subwavelength aperture in a silver film is examined with a novel input configuration comprising an annular laser beam of variable diameter that is prism-coupled to the back face of the silver. Transmission peaks driven by excitation of the back-face surface plasmon mode or by the aperture resonance itself are separately observed. For both cases, comparison of films with and without a front-face, circular grating implies significantly more efficient coupling from the aperture fields to the front-face surface plasmon than directly to free radiation. (c) 2007 Optical Society of America.
Resumo:
The mid-infrared optical response of c-axis thin films of YBa2Cu3O7-delta has been studied using Otto-configuration attenuated total reflectance. The measured reflectance-angle characteristics are dominated by a strong absorption feature due to the excitation of surface plasmons, and can be modeled to determine the a-b plane dielectric function. The results show that while epsilon(i,) and therefore sigma(r), are temperature independent, \epsilon(r)\ exhibits a moderate decrease with generalized Drude analysis shows that the plasma frequency is independent of temperature, but decreases with decreasing doping. The scattering rate increases with temperature, and also increases with decreasing doping, consistent with stronger coupling in the underdoped regime. The mass-enhancement is small but increases to 30-40% at delta = 0.6. Difficulties in reconciling the results with some current theories of high-T-c materials are discussed. Finally, the surface plasmon propagation lengths and penetration depths are shown to vary systematically with doping. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Results are reported on the a-b plane dielectric function (epsilon) of thin-film c-axis NdBa2Cu3O7-delta with close to optimal oxygen doping (T-c similar to 90 K) in the mid-infrared (wavelength 3.392 mum) over the temperature range 85 K to 300 K. An attenuated total reflectance technique based on the excitation of surface plasmon polaritons is used. The results show that \epsilon (r)\ decreases quasi-linearly with increasing temperature, while Ei is invariant with temperature to within experimental uncertainties. Representative values are epsilon = [epsilon (r) + i epsilon (i)] = (-12.9 +/- 0.6) + i(23.0 +/- 1.5) at T similar to 295 K and epsilon = (-15.7 +/- 0.7) + i(23.5 +/- 1.1) at T similar to 90 K. The raw data an interpreted in terms of the generalized Drude model which gives effective scattering rates (1/tau*) that increase with temperature from about 3800 cm(-1) at 90 K to about 4300 cm(-1) at 295 K. There are indications of a superlinear T-dependence in the scattering, 1/tau*: a fit to a function of the form 1/tau* = A + BTalpha gives alpha = 2.8 +/- 0.7. The effective plasma frequency, omega (p)*, with an average value of approximately 21 000 cm(-1) was independent of temperature.
Resumo:
The construction and operation of a prism/variable-gap/sample system (or variable-gap Otto coupler) for the excitation of surface electromagnetic modes is reported. This system has been used for the observation and characterization of surface plasmon polaritons on thin film structures. The initial alignment of prism and sample is performed under gravity and the subsequent gap variation is performed by means of a single actuator operating a flexure stage on which the prism is mounted. The flexure stage ensures the maintenance of good parallelism between sample and prism as the gap dimension is varied. The coupler has also served as a prototype, in terms of design principle, for the construction of a more sophisticated, variable-gap Otto coupler that can operate in vacuum at temperatures from ambient to 85 K. (C) 2000 American Institute of Physics. [S0034-6748(00)02311-X].
Resumo:
The receptor for advanced glycation end products (RAGE) is a pattern-recognition receptor that binds to diverse ligands and initiates a downstream proinflammatory signaling cascade. RAGE activation has been linked to diabetic complications, Alzheimer disease, infections, and cancers. RAGE is known to mediate cell signaling and downstream proinflammatory gene transcription activation, although the precise mechanism surrounding receptor-ligand interactions is still being elucidated. Recent fluorescence resonance energy transfer evidence indicates that RAGE may form oligomers on the cell surface and that this could be related to signal transduction. To investigate whether RAGE forms oligomers, protein-protein interaction assays were carried out. Here, we demonstrate the interaction between RAGE molecules via their N-terminal V domain, which is an important region involved in ligand recognition. By protein cross-linking using water-soluble and membrane-impermeable cross-linker bis(sulfosuccinimidyl) suberate and nondenaturing gels, we show that RAGE forms homodimers at the plasma membrane, a process potentiated by S100B and advanced glycation end products. Soluble RAGE, the RAGE inhibitor, is also capable of binding to RAGE, similar to V peptide, as shown by surface plasmon resonance. Incubation of cells with soluble RAGE or RAGE V domain peptide inhibits RAGE dimerization, subsequent phosphorylation of intracellular MAPK proteins, and activation of NF-kappa B pathways. Thus, the data indicate that dimerization of RAGE represents an important component of RAGE-mediated cell signaling.
Resumo:
A rapid surface plasmon resonance (SPR) screening assay has been developed for the combined detection of T-2 and HT-2 toxins in naturally contaminated cereals using a sensor chip coated with an HT-2 toxin derivative and a monoclonal antibody. The antibody raised against HT-2 displayed high cross-reactivity with T-2 toxin while there was no cross-reaction observed with other commonly occurring trichothecenes. A simple extraction procedure using 40% methanol was applied to baby food, breakfast cereal, and wheat samples prior to biosensor analysis. Limits of detection (LOD) for each matrix were determined as 25 mu g kg(-1) for baby food and breakfast cereal and 26 mu g kg(-1) for wheat. Intra-assay precision (n = 6) was calculated for each matrix. The results were expressed as the relative standard deviation and determined as 2.8% (100 mu g kg(-1)) and 1.8% (200 mu g kg(-1)) in breakfast cereal, 4.6% (50 mu g kg(-1)) and 3.6% (100 mu g kg(-1)) in wheat and 0.97% (25 mu g kg(-1)) and 6.3% (50 mu g kg(-1)) in baby food. Between run precision (n = 3) performed at the same levels yielded relative standard deviations of 6.7% and 3.9% for breakfast cereals, 3.3% and 1.6% for wheat and 6.8% and 0.08% for baby food, respectively. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Paralytic shellfish poisoning (PSP) toxin monitoring in shellfish is currently performed using the internationally accredited AOAC mouse bioassay. Due to ethical and performance-related issues associated with this bioassay, the European Commission has recently published directives extending procedures that may be used for official PSP control. The feasibility of using a surface plasmon resonance optical biosensor to detect PSP toxins in shellfish tissue below regulatory levels was examined. Three different PSP toxin protein binders were investigated: a sodium channel receptor (SCR) preparation derived from rat brains, a monoclonal antibody (GT13-A) raised to gonyautoxin 2/3, and a rabbit polyclonal antibody (R895) raised to saxitoxin (STX). Inhibition assay formats were used throughout. Immobilization of STX to the biosensor chip surface was achieved via amino-coupling. Specific binding and inhibition of binding to this surface was achieved using all proteins tested. For STX calibration curves, 0 - 1000 ng/mL, IC50 values for each binder were as follows: SCR 8.11 ng/mL; GT13-A 5.77 ng/mL; and R895 1.56 ng/mL. Each binder demonstrated a different cross-reactivity profile against a range of STX analogues. R895 delivered a profile that was most likely to detect the widest range of PSP toxins at or below the internationally adopted regulatory limits.
Resumo:
The mouse bioassay is the methodology that is most widely used to detect okadaic acid (OA) in shellfish samples. This is one of the best-known toxins, and it belongs to the family of marine biotoxins referred to as the diarrhetic shellfish poisons (DSP). Due to animal welfare concerns, alternative methods of toxin detection are being sought. A rapid and specific biosensor immunoassay method was developed and validated for the detection of OA. An optical sensor instrument based on the surface plasmon resonance (SPR) phenomenon was utilised. A polyclonal antibody to OA was raised against OA-bovine thyroglobulin conjugate and OA-N-hydroxy succinimide ester was immobilised onto an amine sensor chip surface. The assay parameters selected for the analysis of the samples were: antibody dilution, 1/750; ratio of antibody to standard, 1:1; volume of sample injected, 25 mu l min(-1); flow rate, 25 mu l min(-1). An assay action limit of 126 ng g(-1) was established by analysing of 20 shellfish samples spiked with OA at the critical concentration of 160 ng g(-1), which is the action limit established by the European Union (EU). At this concentration of OA, the assay delivered coefficient of variations (CVs) of
Resumo:
A rapid and sensitive immuno-based screening method was developed to detect domoic acid (DA) present in extracts of shellfish species using a surface plasmon resonance-based optical biosensor. A rabbit polyclonal antibody raised against DA was mixed with standard or sample extracts and allowed to interact with DA immobilized onto a sensor chip surface. The characterization of the antibody strongly suggested high cross-reactivity with DA and important isomers of the toxin. The binding of this antibody to the sensor chip surface was inhibited in the presence of DA in either standard solutions or sample extracts. The DA chip surface proved to be highly stable, achieving approximately 800 analyses per chip without any loss of surface activity. A single analytical cycle (sample injection, chip regeneration, and system wash) took 10 min to complete. Sample analysis (scallops, mussels, cockles, oysters) was achieved by simple extraction with methanol. These extracts were then filtered and diluted before analysis. Detection limits in the ng/g range were achieved by the assay; however, the assay parameters chosen allowed the test to be performed most accurately at the European Union's official action limit for DA of 20 mu g/g. At this concentration, intra- and interassay variations were measured for a range of shellfish species and ranged from 4.5 to 7.4% and 2.3 to 9.7%, respectively.
Resumo:
A surface plasmon resonance biosensor method was developed to measure zilpaterol residues in sheep urine. A CM-5 sensor chip previously reacted with ethylenediamine to produce an aminoethyl group was coupled with 4-carboxybutyl zilpaterol activated using EDC/NHS. Five polyclonal and four monoclonal antibodies were screened for their suitability to detect low levels of zilpaterol using the biosensor technology. Total binding was greater for polyclonal than monoclonal antibodies, but a less diluted antibody solution was required for polyclonal antibodies. A fixed antibody concentration and various concentrations of zilpaterol were injected to obtain a standard curve for each antibody to allow for B-0 and IC50 determination. The stability of the assay was assessed by the consistency of B0 in repeated experiments extending at least six hours. A measure of non-specific binding allowed the assessment of the specificity of the antibody-immobilized ligand interaction. The effect of varying concentrations of urine on B-0 and IC50 was evaluated to assess the degree of