996 resultados para PHYTOPLANKTON


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Programa de doctorado: Oceanografía (Bienio 2006-2008). Universidad de Las Palmas de Gran Canaria, Departamento de Biología y Institut de Ciéncies del Mar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Programa de doctorado de Oceanografía ; 2006-2008

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the industrial revolution, the ocean has absorbed around one third of the anthropogenic CO2, which induced a profound alteration of the carbonate system commonly known as ocean acidification. Since the preindustrial times, the average ocean surface water pH has fallen by 0.1 units, from approximately 8.2 to 8.1 and a further decrease of 0.4 pH units is expected for the end of the century. Despite their microscopic size, marine diatoms are bio-geo-chemically a very important group, responsible for the export of massive amount of carbon to deep waters and sediments. The knowledge of the potential effects of ocean acidification on the phytoplankton growth and on biological pump is still at its infancy. This study wants to investigate the effect of ocean acidification on the growth of the diatom Skeletonema marinoi and on its aggregation, using a mechanistic approach. The experiment consisted of two treatments (Present and Future) representing different pCO2 conditions and two sequential experimental phases. During the cell growth phase a culture of S. marinoi was inoculated into transparent bags and the effect of ocean acidification was studied on various growth parameters, including DOC and TEP production. The aggregation phase consisted in the incubation of the cultures into rolling tanks where the sinking of particles through the water column was simulated and aggregation promoted. Since few studies investigated the effect of pH on the growth of S. marinoi and none used pH ranges that are compatible with the OA scenarios, there were no baselines. I have shown here, that OA does not affect the cell growth of S. marinoi, suggesting that the physiology of this species is robust in respect to the changes in the carbonate chemistry expected for the end of the century. Furthermore, according to my results, OA does not affect the aggregation of S. marinoi in a consistent manner, suggesting that this process has a high natural variability but is not influenced by OA in a predictable way. The effect of OA was tested over a variety of factors including the number of aggregates produced, their size and sinking velocity, the algal, bacterial and TEP content. Many of these variables showed significant treatment effects but none of these were consistent between the two experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Gulf of Aqaba represents a small scale, easy to access, regional analogue of larger oceanic oligotrophic systems. In this Gulf, the seasonal cycles of stratification and mixing drives the seasonal phytoplankton dynamics. In summer and fall, when nutrient concentrations are very low, Prochlorococcus and Synechococcus are more abundant in the surface water. This two populations are exposed to phosphate limitation. During winter mixing, when nutrient concentrations are high, Chlorophyceae and Cryptophyceae are dominant but scarce or absent during summer. In this study it was tried to develop a simulation model based on historical data to predict the phytoplankton dynamics in the northern Gulf of Aqaba. The purpose is to understand what forces operate, and how, to determine the phytoplankton dynamics in this Gulf. To make the models data sampled in two different sampling station (Fish Farm Station and Station A) were used. The data of chemical, biological and physical factors, are available from 14th January 2007 to 28th December 2009. The Fish Farm Station point was near a Fish Farm that was operational until 17th June 2008, complete closure date of the Fish Farm, about halfway through the total sampling time. The Station A sampling point is about 13 Km away from the Fish Farm Station. To build the model, the MATLAB software was used (version 7.6.0.324 R2008a), in particular a tool named Simulink. The Fish Farm Station models shows that the Fish Farm activity has altered the nutrient concentrations and as a consequence the normal phytoplankton dynamics. Despite the distance between the two sampling stations, there might be an influence from the Fish Farm activities also in the Station A ecosystem. The models about this sampling station shows that the Fish Farm impact appears to be much lower than the impact in the Fish Farm Station, because the phytoplankton dynamics appears to be driven mainly by the seasonal mixing cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herbicides are becoming emergent contaminants in Italian surface, coastal and ground waters, due to their intensive use in agriculture. In marine environments herbicides have adverse effects on non-target organisms, as primary producers, resulting in oxygen depletion and decreased primary productivity. Alterations of species composition in algal communities can also occur due to the different sensitivity among the species. In the present thesis the effects of herbicides, widely used in the Northern Adriatic Sea, on different algal species were studied. The main goal of this work was to study the influence of temperature on algal growth in the presence of the triazinic herbicide terbuthylazine (TBA), and the cellular responses adopted to counteract the toxic effects of the pollutant (Chapter 1 and 2). The development of simulation models to be applied in environmental management are needed to organize and track information in a way that would not be possible otherwise and simulate an ecological prospective. The data collected from laboratory experiments were used to simulate algal responses to the TBA exposure at increasing temperature conditions (Chapter 3). Part of the thesis was conducted in foreign countries. The work presented in Chapter 4 was focused on the effect of high light on growth, toxicity and mixotrophy of the ichtyotoxic species Prymnesium parvum. In addition, a mesocosm experiment was conducted in order to study the synergic effect of the pollutant emamectin benzoate with other anthropogenic stressors, such as oil pollution and induced phytoplankton blooms (Chapter 5).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human activities strongly influence environmental processes, and while human domination increases, biodiversity progressively declines in ecosystems worldwide. High genetic and phenotypic variability ensures functionality and stability of ecosystem processes through time and increases the resilience and the adaptive capacity of populations and communities, while a reduction in functional diversity leads to a decrease in the ability to respond in a changing environment. Pollution is becoming one of the major threats in aquatic ecosystem, and pharmaceutical and personal care products (PPCPs) in particular are a relatively new group of environmental contaminants suspected to have adverse effects on aquatic organisms. There is still a lake of knowledge on the responses of communities to complex chemical mixtures in the environment. We used an individual-trait-based approach to assess the response of a phytoplankton community in a scenario of combined pollution and environmental change (steady increasing in temperature). We manipulated individual-level trait diversity directly (by filtering out size classes) and indirectly (through exposure to PPCPs mixture), and studied how reduction in trait-diversity affected community structure, production of biomass and the ability of the community to track a changing environment. We found that exposure to PPCPs slows down the ability of the community to respond to an increasing temperature. Our study also highlights how physiological responses (induced by PPCPs exposure) are important for ecosystem processes: although from an ecological point of view experimental communities converged to a similar structure, they were functionally different.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complex effects of light, nutrients and temperature lead to a variable carbon to chlorophyll (C:Chl) ratio in phytoplankton cells. Using field data collected in the Equatorial Pacific, we derived a new dynamic model with a non-steady C:Chl ratio as a function of irradiance, nitrate, iron, and temperature. The dynamic model is implemented into a basin-scale ocean circulation-biogeochemistry model and tested in the Equatorial Pacific Ocean. The model reproduces well the general features of phytoplankton dynamics in this region. For instance, the simulated deep chlorophyll maximum (DCM) is much deeper in the western warm pool (similar to 100 m) than in the Eastern Equatorial Pacific (similar to 50 m). The model also shows the ability to reproduce chlorophyll, including not only the zonal, meridional and vertical variations, but also the interannual variability. This modeling study demonstrates that combination of nitrate and iron regulates the spatial and temporal variations in the phytoplankton C:Chl ratio in the Equatorial Pacific. Sensitivity simulations suggest that nitrate is mainly responsible for the high C:Chl ratio in the western warm pool while iron is responsible for the frontal features in the C:Chl ratio between the warm pool and the upwelling region. In addition, iron plays a dominant role in regulating the spatial and temporal variations of the C:Chl ratio in the Central and Eastern Equatorial Pacific. While temperature has a relatively small effect on the C:Chl ratio, light is primarily responsible for the vertical decrease of phytoplankton C:Chl ratio in the euphotic zone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamics of phytoplankton and nutrients before, during and after the winter-spring bloom on Georges Bank were studied on 6 monthly survey cruises from January to June 1999. We measured hydrography, phytoplankton cell densities, chlorophyll a, dissolved inorganic nutrients (NO3 + NO2, NH4, Si(OH)(4), PO4), dissolved organic nitrogen (DON) and phosphorus (DOP), particulate organic carbon (POC) and nitrogen (PON) and total particulate phosphorus (TPP). We present evidence that phytoplankton production may be significant year-round, and that the winter-spring bloom may have started in January. From January to April the phytoplankton was comprised almost exclusively of diatoms, reaching cell densities in March and April of ca. 450 cells ml(-1); chlorophyll a concentrations exceeded 10 mug l(-1) in April. Diatoms decreased to relatively low levels in May (< 50 x 10(3) cells l(-1)) and increased again in June (>300 x 10(3) cells l(-1)). Densities of dinoflagellates and nanoflagellates were low (< 10 x 10(3) cells l(-1)) from January to April, and increased in May and June to nearly 300 x 10(3) cells l(-1). Nitrate + nitrite concentrations in January were <3 muM in the shallow, central portion of the bank and decreased steadily each month. Silicate was also <3 muM over an even larger area of the central bank in January and declined to <1.5 muM over most of the Bank in April. The data suggest that silicate depletion, not DIN, contributed to the cessation of the diatom bloom. Regeneration of silicate occurred in May and June, presumably as a result of rising water temperatures in late spring which increased the dissolution rate of diatom frustules from the earlier diatom bloom. Dissolved organic nitrogen may have been utilized at the start of the winter-spring bloom; concentrations were ca, 14 muM in January, dropping to < 6 mug l(-1) in February, after which DON concentrations steadily rose to > 15 mug l(-1) in June. Overall micro-and nanoplankton biomass, measured as POC, PON and TPP, increased over the 6 mo period, as did nutritional quality of that biomass as indicated by declining C:N ratios. Our results suggest there may have been an increase in the heterotrophic component of the plankton in May and June which coincided with a second burst in diatom abundance. We discuss general features of planktonic production and nutrient dynamics with respect to year-round production on the Bank.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the California Current System, strong mesoscale variability associated with eddies and meanders of the coastal jet play an important role in the biological productivity of the area. To assess the dominant timescales of variability, a wavelet analysis is applied to almost nine years (October 1997 to July 2006) of 1-km-resolution, 5-day-averaged, Sea-viewing Wide Field-of-view Sensor (SeaWiFS) chlorophyll a (chl a) concentration data. The dominant periods of chlorophyll variance, and how these change in time, are quantified as a function of distance offshore. The maximum variance in chlorophyll occurs with a period of similar to 100-200 days. A seasonal cycle in the timing of peak variance is revealed, with maxima in spring/summer close to shore (20 km) and in autumn/winter 200 km offshore. Interannual variability in the magnitude of chlorophyll variance shows maxima in 1999, 2001, 2002, and 2005. There is a very strong out-of-phase correspondence between the time series of chlorophyll variance and the Pacific Decadal Oscillation (PDO) index. We hypothesize that positive PDO conditions, which reflect weak winds and poor upwelling conditions, result in reduced mesoscale variability in the coastal region, and a subsequent decrease in chlorophyll variance. Although the chlorophyll variance responds to basin-scale forcing, chlorophyll biomass does not necessarily correspond to the phase of the PDO, suggesting that it is influenced more by local-scale processes. The mesoscale variability in the system may be as important as the chl a biomass in determining the potential productivity of higher trophic levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rate of proteolysis of amino acids was used to assess the nutritional lability of various materials making up estuarine seston in 3 Maine, USA, estuaries. Physical separations of subcellular fractions of phytoplankton cells led to higher proteolysis rate constants for the cytoplasmic fraction (>1.2 h(-1)) than for the membrane fraction (0.2 to 1 h(-1)). Whole cells, copepod fecal pellets, bottom sediments, and estuarine seston had overlapping ranges of rate constants of 0.17 to 1.3 h(-1), which were indistinguishable from one another. Protein pools in the seston of these estuaries throughout the seasons were dominated by phytoplankton production and its fresh detrital products. Inverse relationships between proteolysis rate constants for estuarine seston and the ratios of pheopigments to chlorophyll indicates that the average lability of seston decreases with the disappearance of cytoplasmic material in suspension. This kinetic approach to the quality of food resources implies the existence of different pools of digestible protein for estuarine heterotrophs with different gut residence times. Preferential enrichment of membrane components in sestonic detritus may result from the differential lability of proteins in cytoplasm versus membrane components of cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phytoplankton photosynthesis links global ocean biology and climate-driven fluctuations in the physical environment. These interactions are largely expressed through changes in phytoplankton physiology, but physiological status has proven extremely challenging to characterize globally. Phytoplankton fluorescence does provide a rich source of physiological information long exploited in laboratory and field studies, and is now observed from space. Here we evaluate the physiological underpinnings of global variations in satellite-based phytoplankton chlorophyll fluorescence. The three dominant factors influencing fluorescence distributions are chlorophyll concentration, pigment packaging effects on light absorption, and light-dependent energy-quenching processes. After accounting for these three factors, resultant global distributions of quenching-corrected fluorescence quantum yields reveal a striking consistency with anticipated patterns of iron availability. High fluorescence quantum yields are typically found in low iron waters, while low quantum yields dominate regions where other environmental factors are most limiting to phytoplankton growth. Specific properties of photosynthetic membranes are discussed that provide a mechanistic view linking iron stress to satellite-detected fluorescence. Our results present satellite-based fluorescence as a valuable tool for evaluating nutrient stress predictions in ocean ecosystem models and give the first synoptic observational evidence that iron plays an important role in seasonal phytoplankton dynamics of the Indian Ocean. Satellite fluorescence may also provide a path for monitoring climate-phytoplankton physiology interactions and improving descriptions of phytoplankton light use efficiencies in ocean productivity models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is expected that climate change will have significant impacts on ecosystems. Most model projections agree that the ocean will experience stronger stratification and less nutrient supply from deep waters. These changes will likely affect marine phytoplankton communities and will thus impact on the higher trophic levels of the oceanic food web. The potential consequences of future climate change on marine microbial communities can be investigated and predicted only with the help of mathematical models. Here we present the application of a model that describes aggregate properties of marine phytoplankton communities and captures the effects of a changing environment on their composition and adaptive capacity. Specifically, the model describes the phytoplankton community in terms of total biomass, mean cell size, and functional diversity. The model is applied to two contrasting regions of the Atlantic Ocean (tropical and temperate) and is tested under two emission scenarios: SRES A2 or “business as usual” and SRES B1 or “local utopia.” We find that all three macroecological properties will decline during the next century in both regions, although this effect will be more pronounced in the temperate region. Being consistent with previous model predictions, our results show that a simple trait-based modeling framework represents a valuable tool for investigating how phytoplankton communities may reorganize under a changing climate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the radioisotope 51Cr, we investigated the controls of cellular Cr accumulation in an array of marine phytoplankton grown in environmentally relevant Cr concentrations (1–10 nM). Given the affinity of Cr(III) for amorphous Fe-hydroxide mineral surfaces, and the formation of these mineral phases on the outside of phytoplankton cells, extracellular Cr was monitored in a model diatom species (Thalassiosira weissflogii) as extracellular Fe concentrations varied. Extracellular Cr in T. weissflogii increased with increasing extracellular Fe, demonstrating that Cr may be removed from seawater via extracellular adsorption to phytoplankton. Short-term Cr(VI) and Cr(III) uptake experiments performed with T. weissflogii demonstrated that Cr(III) was the primary oxidation state adsorbing to cells and being internalized by them. Cellular Cr:C ratios (<0.5 μmol Cr mol C−1) of the eight phytoplankton species surveyed were significantly lower than previously reported Cr:C ratios in marine particles with a high biogenic component (10–300 μmol Cr mol C−1). This indicates that Cr(III) likely accumulates in marine particles due to uptake and/or adsorption. Mass balance calculations demonstrate that surface water Cr deficits can be explained via loss of Cr(III) to exported particles, thereby providing a mechanism to account for the nutrient depth profile for Cr in modern seawater. Given the large fractionation of stable Cr isotopes during Cr(VI) reduction, Cr(III) associated with exported organic carbon is likely enriched in lighter isotopes. Most sedimentary Cr isotope studies have thus far neglected internal fractionating processes in the marine Cr cycle, but our data indicate that loss of Cr to exported particles may be traced in the sedimentary d53Cr record.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean biogeochemical and ecosystem processes are linked by net primary production (NPP) in the ocean's surface layer, where inorganic carbon is fixed by photosynthetic processes. Determinations of NPP are necessarily a function of phytoplankton biomass and its physiological status, but the estimation of these two terms from space has remained an elusive target. Here we present new satellite ocean color observations of phytoplankton carbon (C) and chlorophyll (Chl) biomass and show that derived Chl:C ratios closely follow anticipated physiological dependencies on light, nutrients, and temperature. With this new information, global estimates of phytoplankton growth rates (mu) and carbon-based NPP are made for the first time. Compared to an earlier chlorophyll-based approach, our carbon-based values are considerably higher in tropical oceans, show greater seasonality at middle and high latitudes, and illustrate important differences in the formation and demise of regional algal blooms. This fusion of emerging concepts from the phycological and remote sensing disciplines has the potential to fundamentally change how we model and observe carbon cycling in the global oceans.