996 resultados para PHYSICS, MATHEMATICAL
Resumo:
A model for a spin-1/2 ladder system with two legs is introduced. It is demonstrated that this model is solvable via the Bethe ansatz method for arbitrary values of the rung coupling J. This is achieved by a suitable mapping from the Hubbard model with appropriate twisted boundary conditions. We determine that a phase transition between gapped and gapless spin excitations occurs at the critical value J(c) = 1/2 of the rung coupling.
Resumo:
Three kinds of integrable Kondo problems in one-dimensional extended Hubbard models are studied by means of the boundary graded quantum inverse scattering method. The boundary K matrices depending on the local moments of the impurities are presented as a nontrivial realization of the graded reflection equation algebras acting in a (2s alpha + 1)-dimensional impurity Hilbert space. Furthermore, these models are solved using the algebraic Bethe ansatz method, and the Bethe ansatz equations are obtained.
Resumo:
A modelling framework is developed to determine the joint economic and environmental net benefits of alternative land allocation strategies. Estimates of community preferences for preservation of natural land, derived from a choice modelling study, are used as input to a model of agricultural production in an optimisation framework. The trade-offs between agricultural production and environmental protection are analysed using the sugar industry of the Herbert River district of north Queensland as an example. Spatially-differentiated resource attributes and the opportunity costs of natural land determine the optimal tradeoffs between production and conservation for a range of sugar prices.
Resumo:
A number of mathematical models have been used to describe percutaneous absorption kinetics. In general, most of these models have used either diffusion-based or compartmental equations. The object of any mathematical model is to a) be able to represent the processes associated with absorption accurately, b) be able to describe/summarize experimental data with parametric equations or moments, and c) predict kinetics under varying conditions. However, in describing the processes involved, some developed models often suffer from being of too complex a form to be practically useful. In this chapter, we attempt to approach the issue of mathematical modeling in percutaneous absorption from four perspectives. These are to a) describe simple practical models, b) provide an overview of the more complex models, c) summarize some of the more important/useful models used to date, and d) examine sonic practical applications of the models. The range of processes involved in percutaneous absorption and considered in developing the mathematical models in this chapter is shown in Fig. 1. We initially address in vitro skin diffusion models and consider a) constant donor concentration and receptor conditions, b) the corresponding flux, donor, skin, and receptor amount-time profiles for solutions, and c) amount- and flux-time profiles when the donor phase is removed. More complex issues, such as finite-volume donor phase, finite-volume receptor phase, the presence of an efflux. rate constant at the membrane-receptor interphase, and two-layer diffusion, are then considered. We then look at specific models and issues concerned with a) release from topical products, b) use of compartmental models as alternatives to diffusion models, c) concentration-dependent absorption, d) modeling of skin metabolism, e) role of solute-skin-vehicle interactions, f) effects of vehicle loss, a) shunt transport, and h) in vivo diffusion, compartmental, physiological, and deconvolution models. We conclude by examining topics such as a) deep tissue penetration, b) pharmacodynamics, c) iontophoresis, d) sonophoresis, and e) pitfalls in modeling.
Resumo:
Let H be a graph. A graph G is said to be H-free if it contains no subgraph isomorphic to H. A graph G is said to be an H-saturated subgraph of a graph K if G is an H-free subgraph of K with the property that for any edge e is an element of E(K)\E(G), G boolean OR {e} is not H-free. We present some general results on K-s,K-t-saturated subgraphs of the complete bipartite graph K-m,K-n and study the problem of finding, for all possible values of q, a C-4-saturated subgraph of K., having precisely q edges. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Simulations provide a powerful means to help gain the understanding of crustal fault system physics required to progress towards the goal of earthquake forecasting. Cellular Automata are efficient enough to probe system dynamics but their simplifications render interpretations questionable. In contrast, sophisticated elasto-dynamic models yield more convincing results but are too computationally demanding to explore phase space. To help bridge this gap, we develop a simple 2D elastodynamic model of parallel fault systems. The model is discretised onto a triangular lattice and faults are specified as split nodes along horizontal rows in the lattice. A simple numerical approach is presented for calculating the forces at medium and split nodes such that general nonlinear frictional constitutive relations can be modeled along faults. Single and multi-fault simulation examples are presented using a nonlinear frictional relation that is slip and slip-rate dependent in order to illustrate the model.
Resumo:
The aim of this work was to exemplify the specific contribution of both two- and three-dimensional (31)) X-ray computed tomography to characterise earthworm burrow systems. To achieve this purpose we used 3D mathematical morphology operators to characterise burrow systems resulting from the activity of an anecic (Aporrectodea noctunia), and an endogeic species (Allolobophora chlorotica), when both species were introduced either separately or together into artificial soil cores. Images of these soil cores were obtained using a medical X-ray tomography scanner. Three-dimensional reconstructions of burrow systems were obtained using a specifically developed segmentation algorithm. To study the differences between burrow systems, a set of classical tools of mathematical morphology (granulometries) were used. So-called granulometries based on different structuring elements clearly separated the different burrow systems. They enabled us to show that burrows made by the anecic species were fatter, longer, more vertical, more continuous but less sinuous than burrows of the endogeic species. The granulometry transform of the soil matrix showed that burrows made by A. nocturna were more evenly distributed than those of A. chlorotica. Although a good discrimination was possible when only one species was introduced into the soil cores, it was not possible to separate burrows of the two species from each other in cases where species were introduced into the same soil core. This limitation, partly due to the insufficient spatial resolution of the medical scanner, precluded the use of the morphological operators to study putative interactions between the two species.
Resumo:
A generalised ladder operator is used to construct the conserved operators for any one-dimensional lattice model derived from the Yang-Baxter equation. As an example, the low order conserved operators for the XYh model are calculated explicitly.
Resumo:
We obtain a class of non-diagonal solutions of the reflection equation for the trigonometric A(n-1)((1)) vertex model. The solutions can be expressed in terms of intertwinner matrix and its inverse, which intertwine two trigonometric R-matrices. In addition to a discrete (positive integer) parameter l, 1 less than or equal to l less than or equal to n, the solution contains n + 2 continuous boundary parameters.
Resumo:
We construct the Drinfeld twists (factorizing F-matrices) for the supersymmetric t-J model. Working in the basis provided by the F-matrix (i.e. the so-called F-basis), we obtain completely symmetric representations of the monodromy matrix and the pseudo-particle creation operators of the model. These enable us to resolve the hierarchy of the nested Bethe vectors for the gl(2\1) invariant t-J model.
Resumo:
The concept of local concurrence is used to quantify the entanglement between a single qubit and the remainder of a multiqubit system. For the ground state of the BCS model in the thermodynamic limit the set of local concurrences completely describes the entanglement. As a measure for the entanglement of the full system we investigate the average local concurrence (ALC). We find that the ALC satisfies a simple relation with the order parameter. We then show that for finite systems with a fixed particle number, a relation between the ALC and the condensation energy exposes a threshold coupling. Below the threshold, entanglement measures besides the ALC are significant.
Resumo:
In 1966 the Brazilian physicist Klaus Tausk (b. 1927) circulated a preprint from the International Centre for Theoretical Physics in Trieste, Italy, criticizing Adriana Daneri, Angelo Loinger, and Giovanni Maria Prosperi`s theory of 1962 on the measurement problem in quantum mechanics. A heated controversy ensued between two opposing camps within the orthodox interpretation of quantum theory, represented by Leon Rosenfeld and Eugene P. Wigner. The controversy went well beyond the strictly scientific issues, however, reflecting philosophical and political commitments within the context of the Cold War, the relationship between science in developed and Third World countries, the importance of social skills, and personal idiosyncrasies.
Resumo:
Quantum mechanics has been formulated in phase space, with the Wigner function as the representative of the quantum density operator, and classical mechanics has been formulated in Hilbert space, with the Groenewold operator as the representative of the classical Liouville density function. Semiclassical approximations to the quantum evolution of the Wigner function have been defined, enabling the quantum evolution to be approached from a classical starting point. Now analogous semiquantum approximations to the classical evolution of the Groenewold operator are defined, enabling the classical evolution to be approached from a quantum starting point. Simple nonlinear systems with one degree of freedom are considered, whose Hamiltonians are polynomials in the Hamiltonian of the simple harmonic oscillator. The behavior of expectation values of simple observables and of eigenvalues of the Groenewold operator are calculated numerically and compared for the various semiclassical and semiquantum approximations.
Resumo:
The concept of entanglement in systems where the particles are indistinguishable has been the subject of much recent interest and controversy. In this paper we study the notion of entanglement of particles introduced by Wiseman and Vaccaro [Phys. Rev. Lett. 91, 097902 (2003)] in several specific physical systems, including some that occur in condensed-matter physics. The entanglement of particles is relevant when the identical particles are itinerant and so not distinguished by their position as in spin models. We show that entanglement of particles can behave differently than other approaches that have been used previously, such as entanglement of modes (occupation-number entanglement) and the entanglement in the two-spin reduced density matrix. We argue that the entanglement of particles is what could actually be measured in most experimental scenarios and thus its physical significance is clear. This suggests that entanglement of particles may be useful in connecting theoretical and experimental studies of entanglement in condensed-matter systems.