996 resultados para PERIODISMO CIENTIFICO
Resumo:
In this work a simple and reliable method for the simultaneous determination of Cr, Fe, Ni and V in crude oil, using emulsion sampling graphite furnace atomic absorption spectrometry is proposed. Under the best conditions, sample masses around 50 mg were weighed in polypropylene tubes and emulsified in a mixture of 0.5% (v v(-1)) hexane + 6% (m v(-1)) Triton X-100 (R). Considering the compromised conditions, the pyrolysis an atomization temperatures for the simultaneous determination of Cr, Fe, Ni and V were 1400 degrees C and 2500 degrees C, respectively. Aliquots of 20 mu L of reference solution and sample emulsion were co-injected into the graphite tube with 10 mu L of 1.0 g L(-1) Mg(NO(3))(2) as chemical modifier. The detection limits (n = 10, 3 sigma) and characteristic masses were, respectively: 0.07 mu g g(-1) and 19 pg for Cr; 2.15 mu g g(-1) and 31 pg for Fe; 1.25 mu g g(-1) and 44 pg for Ni; and 1.15 mu g g(-1) and 149 pg for V. The reliability of the proposed method was checked by fuel oil Standard Reference Material (SRMTriton X-100 (R) 1634c - NIST) analysis. The concentrations found presented no statistical differences compared to the certified values at 95% confidence level.
Resumo:
Changes in intracellular Ca(2+) concentration ([Ca(2+)](i)) play a central role in neuronal differentiation. However, Ca(2+) signaling in this process remains poorly understood and it is unknown whether embryonic and adult stem cells share the same signaling pathways. To clarify this issue, neuronal differentiation was analyzed in two cell lines: embryonic P19 carcinoma stem cells (CSCs) and adult murine bone-marrow mesenchymal stem cells (MSC). We studied Ca(2+) release from the endoplasmic reticulum via intracellular ryanodine-sensitive (RyR) and IP(3)-sensitive (IP(3)R) receptors. We observed that caffeine, a RyR agonist, induced a [Ca(2+)](i) response that increased throughout neuronal differentiation. We also demonstrated a functional coupling between RyRs and L-but not with N-, P-, or Q-type Ca(v)1 Ca(2+) channels, both in embryonal CSC and adult MSC. We also found that agonists of L-type channels and of RyRs increase neurogenesis and neuronal differentiation, while antagonists of these channels have the opposite effect. Thus, our data demonstrate that in both cell lines RyRs control internal Ca(2+) release following voltage-dependent Ca(2+) entry via L-type Ca(2+) channels. This study shows that both in embryonal CSC and adult MSC [Ca(2+)](i) is controlled by a common pathway, indicating that coupling of L-type Ca(2+) channels and RyRs may be a conserved mechanism necessary for neuronal differentiation.
Resumo:
We report in this paper the effect of temperature on the oscillatory electro-oxidation of methanol on polycrystalline platinum in aqueous sulfuric acid media. Potential oscillations were studied under galvanostatic control and at four temperatures ranging from 5 to 35 degrees C. For a given temperature, the departure from thermodynamic equilibrium does not affect the oscillation period and results in a slight increase of the oscillation amplitude. Apparent activation energies were also evaluated in voltammetric and chronoamperometric experiments and were compared to those obtained under oscillatory conditions. In any case, the apparent activation energies values fell into the region between 50 and 70 kJ mol(-1). Specifically under oscillatory conditions an apparent activation energy of 60 +/- 3 kJ mol(-1) and a temperature coefficient q(10) of about 2.3 were observed. The present findings extend our recently published report (J. Phys. Chem. A, 2008, 112, 4617) on the temperature effect on the oscillatory electro-oxidation of formic acid. We found that, despite the fact that both studies were carried out under similar conditions, unlike the case of formic acid, only conventional, Arrhenius, dynamics was observed for methanol.
Resumo:
An acetylcholinesterase (AchE) based amperometric biosensor was developed by immobilisation of the enzyme onto a self assembled modified gold electrode. Cyclic voltammetric experiments performed with the SAM-AchE biosensor in phosphate buffer solutions ( pH = 7.2) containing acetylthiocholine confirmed the formation of thiocholine and its electrochemical oxidation at E-p = 0.28 V vs Ag/AgCl. An indirect methodology involving the inhibition effect of parathion and carbaryl on the enzymatic reaction was developed and employed to measure both pesticides in spiked natural water and food samples without pre-treatment or pre-concentration steps. Values higher than 91-98.0% in recovery experiments indicated the feasibility of the proposed electroanalytical methodology to quantify both pesticides in water or food samples. HPLC measurements were also performed for comparison and confirmed the values measured amperometrically.
Resumo:
Organosolv lignins can replace petroleum chemicals such as phenol either partially or totally in various applications. Eight lignins, seven of which corresponded to the ethanol-water fractionation of bagasse and the other to a reference lignin (Alcell (R)) were analyzed with the aim to evaluate their chemical and physicochemical characteristics. The purity of the lignin fractions was determined by high pressure liquid chromatography (HPLC) and by ash content. Fourier Transform-Infrared Spectroscopy (FTIR) techniques and differential UV spectroscopy were applied to identify the chemical groups in the lignin samples. The molecular weight distribution was determined by size exclusion chromatography (HPSEC). Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques were used to determine the mass loss due to the high temperature treatment. The lignins studied showed the presence of p-hydroxyphenyl (H unit) and a greater proportion of guaiacyl (G unit) moieties, lower purity, similar or greater amount of phenolic hydroxyl groups, and higher degradation temperatures, than the Alcell (R) lignin.
Resumo:
We studied the open circuit interaction of methanol and ethanol with oxidized platinum electrodes using in situ infrared spectroscopy. For methanol, it was found that formic acid is the main species formed in the initial region of the transient and that the steep decrease of the open circuit potential coincides with an explosive increase in the CO(2) production, which is followed by an increase in the coverage of adsorbed CO. For ethanol, acetaldehyde was the main product detected and only traces of dissolved CO(2) and adsorbed CO were found after the steep potential decay. In both cases, the transients were interpreted in terms of (a) the emergence of sub-surface oxygen in the beginning of the transient, where the oxide content is high, and (b) the autocatalytic production of free platinum sites for lower oxide content during the steep decay of the open circuit potential.
Resumo:
We report a detailed numerical investigation of a prototype electrochemical oscillator, in terms of high-resolution phase diagrams for an experimentally relevant section of the control (parameter) space. The prototype model consists of a set of three autonomous ordinary differential equations which captures the general features of electrochemical oscillators characterized by a partially hidden negative differential resistance in an N-shaped current-voltage stationary curve. By computing Lyapunov exponents, we provide a detailed discrimination between chaotic and periodic phases of the electrochemical oscillator. Such phases reveal the existence of an intricate structure of domains of periodicity self-organized into a chaotic background. Shrimp-like periodic regions previously observed in other discrete and continuous systems were also observed here, which corroborate the universal nature of the occurrence of such structures. In addition, we have also found a structured period distribution within the order region. Finally we discuss the possible experimental realization of comparable phase diagrams.
Resumo:
Despite the fact that the majority of the catalytic electro-oxidation of small organic molecules presents oscillatory kinetics under certain conditions, there are few systematic studies concerning the influence of experimental parameters on the oscillatory dynamics. Of the studies available, most are devoted to C1 molecules and just some scattered data are available for C2 molecules. We present in this work a comprehensive study of the electro-oxidation of ethylene glycol on polycrystalline platinum surfaces and in alkaline media. The system was studied by means of electrochemical impedance spectroscopy, cyclic voltammetry, and chronoamperometry, and the impact of parameters such as applied current, ethylene glycol concentration, and temperature were investigated. As in the case of other parent systems, the instabilities in this system were associated with a hidden negative differential resistance, as identified by impedance data. Very rich and robust dynamics were observed, including the presence of harmonic and mixed mode oscillations and chaotic states, in some parameter region. Oscillation frequencies of about 16 Hz characterized the fastest oscillations ever reported for the electro-oxidation of small organic molecules. Those high frequencies were strongly influenced by the electrolyte pH and far less affected by the EG concentration. The system was regularly dependent on temperature under voltammetric conditions but rather independent within the oscillatory regime.
Resumo:
Oscillatory kinetics is commonly observed in the electrocatalytic oxidation of most species that can be used in fuel cell devices. Examples include formic acid, methanol, ethanol, ethylene glycol, and hydrogen/carbon monoxide mixtures, and most papers refer to half-cell experiments. We report in this paper the experimental investigation of the oscillatory dynamics in a proton exchange membrane (PEM) fuel cell at 30 degrees C. The system consists of a Pt/C cathode fed with oxygen and a PtRu (1:1)/C anode fed with H(2) mixed with 100 ppm of CO, and was studied at different cell currents and anode flow rates. Many different states including periodic and nonperiodic series were observed as a function of the cell current and the H(2)/CO flow rate. In general, aperiodic/chaotic states were favored at high currents and low flow rates. The dynamics was further characterized in terms of the relationship between the oscillation amplitude and the subsequent time required for the anode to get poisoned by carbon monoxide. Results are discussed in terms of the mechanistic aspects of the carbon monoxide adsorption and oxidation. (C) 2010 The Electrochemical Society. [DOI: 10.1149/1.3463725] All rights reserved.
Resumo:
Phaethornis longuemareus aethopyga was described by John T. Zimmer in 1950 and treated as a valid subspecies until it was proposed that the three known specimens were hybrids between R ruber and P. rupurumii amazonicus. On the basis of some recently collected specimens, we reevaluated the validity of P. l. aethopyga. Despite showing some differences related to age and sex, all specimens agree in the general plumage pattern and are fully diagnosable when compared with any other taxon of the genus. The hypothesis of a hybrid origin becomes unsustainable when one notes that (1) P. l. aethopyga has characters that are unique and absent in the purported parental species, such as the white outer margins at the base of the rectrices; and (2) P. l. aethopyga occurs far from the distribution of one of the alleged parental species. Furthermore, field data show that P. l. aethopyga has attributes typical of a valid and independent taxon, such as lekking behavior. Therefore, given its overall diagnosis, P. aethopyga could at least be treated as a phylogenetic species. Yet its morphological and vocal distinctiveness with respect to other Phaethornis spp. in the ""Pygmornis group"" is greater than that observed between some species pairs traditionally regarded as separate biological species within the group, which supports its recognition as a species under the biological species concept. Received 13 July 2008, accepted 9 March 2009.
Resumo:
Medusae and polyps of Clytia are abundantly found in coastal marine environments and one species in the genus-Clytia hemisphaerica (Linnaeus, 1767)-has become an important experimental model. Yet, only 10 species in the genus have had their life cycle investigated. Most species of Clytia are also poorly described, and detailed life cycle and morphological studies are needed for accurate species-level identifications. Here, we investigated the life cycle of Clytia elsaeoswaldae Stechow, 1914, a species described for the tropical western Atlantic and subsequently considered conspecific to the nearly-cosmopolitan species Clytia gracilis (Sars, 1850) and Clytia hemisphaerica, originally described for the temperate North Atlantic. Based on observations of mature medusae and multiple colonies from southeastern Brazil and the U. S. Virgin Islands (type locality), our results show that C. elsaeoswaldae is morphologically distinct from C. gracilis and C. hemisphaerica. The morphological results are corroborated by a multigene phylogenetic analysis of the genus Clytia, which shows that C. gracilis-like species form a polyphyletic group of several species. These results suggest that the nearly-cosmopolitan distribution attributed to some species of Clytia may be due to the non-recognition of morphologically similar species with more restricted ranges.
Resumo:
No-tillage mulch-based (NTM) cropping systems have been widely adopted by farmers in the Brazilian savanna region (Cerrado biome). We hypothesized that this new type of management should have a profound impact on soil organic carbon (SOC) at regional scale and consequently on climate change mitigation. The objective of this study was thus to quantify the SOC storage potential of NTM in the oxisols of the Cerrado using a synchronic approach that is based on a chronosequence of fields of different years under NTM. The study consisted of three phases: (1) a farm/cropping system survey to identify the main types of NTM systems to be chosen for the chronosequence; (2) a field survey to identify a homogeneous set of situations for the chronosequence and (3) the characterization of the chronosequence to assess the SOC storage potential. The main NTM system practiced by farmers is an annual succession of soybean (Glycine max)or maize (Zea mays) with another cereal crop. This cropping system covers 54% of the total cultivated area in the region. At the regional level, soil organic C concentrations from NTM fields were closely correlated with clay + silt content of the soil (r(2) = 0.64). No significant correlation was observed (r(2) = 0.07), however, between these two variables when we only considered the fields with a clay + silt content in the 500-700 g kg(-1) range. The final chronosequence of NTM fields was therefore based on a subsample of eight fields, within this textural range. The SOC stocks in the 0-30 cm topsoil layer of these selected fields varied between 4.2 and 6.7 kg C m(-2) and increased on average (r(2) = 0.97) with 0.19 kg C m(-2) year(-1). After 12 years of NTM management, SOC stocks were no longer significantly different from the stocks under natural Cerrado vegetation (p < 0.05), whereas a 23-year-old conventionally tilled and cropped field showed SOC stocks that were about 30% below this level. Confirming our hypotheses, this study clearly illustrated the high potential of NTM systems in increasing SOC storage under tropical conditions, and how a synchronic approach may be used to assess efficiently such modification on farmers` fields, identifying and excluding non desirable sources of heterogeneity (management, soils and climate). (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Live aboveground biomass (AGB) is an important source of uncertainty in the carbon balance from the tropical regions in part due scarcity of reliable estimates of live AGB and its variation across landscapes and forest types. Studies of forest structure and biomass stocks of Neotropical forests are biased toward Amazonian and Central American sites. In particular, standardized estimates of aboveground biomass stocks for the Brazilian Atlantic forest are rarely available. Notwithstanding the role of environmental variables that control the distribution and abundance of biomass in tropical lowland forests has been the subject of considerable research, the effect of short, steep elevational gradients on tropical forest structure and carbon dynamics is not well known. In order to evaluate forest structure and live AGB variation along an elevational gradient (0-1100 m a.s.l.) of coastal Atlantic Forest in SE Brazil, we carried out a standard census of woody stems >= 4.8 cm dbh in 13 1-ha permanent plots established on four different sites in 2006-2007. Live AGB ranged from 166.3 Mg ha(-1) (bootstrapped 95% CI: 1444,187.0) to 283.2 Mg ha(-1) (bootstrapped 95% CI: 253.0,325.2) and increased with elevation. We found that local-scale topographic variation associated with elevation influences the distribution of trees >50 cm dbh and total live AGB. Across all elevations, we found more stems (64-75%) with limited crown illumination but the largest proportion of the live AGB (68-85%) was stored in stems with highly illuminated or fully exposed crowns. Topography, disturbance and associated changes in light and nutrient supply probably control biomass distribution along this short but representative elevational gradient. Our findings also showed that intact Atlantic forest sites stored substantial amounts of carbon aboveground. The live tree AGB of the stands was found to be lower than Central Amazonian forests, but within the range of Neotropical forests, in particular when compared to Central American forests. Our comparative data suggests that differences in live tree AGB among Neotropical forests are probably related to the heterogeneous distribution of large and medium-sized diameter trees within forests and how the live biomass is partitioned among those size classes, in accordance with general trends found by previous studies. In addition, the elevational variation in live AGB stocks suggests a large spatial variability over coastal Atlantic forests in Brazil, clearly indicating that it is important to consider regional differences in biomass stocks for evaluating the role of this threatened tropical biome in the global carbon cycle. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Lignin phenols were measured in the sediments of Sepitiba Bay, Rio de Janeiro, Brazil and in bedload sediments and suspended sediments of the four major fluvial inputs to the bay: Sao Francisco and Guandu Channels and the Guarda and Cacao Rivers. Fluvial suspended lignin yields (Sigma 8 3.5-14.6 mgC 10 g dw(-1)) vary little between the wet and dry seasons and are poorly correlated with fluvial chlorophyll concentrations (0.8-50.2 mu gC L(-1)). Despite current land use practices that favor grassland agriculture or industrial uses, fluvial lignin compositions are dominated by a degraded leaf-sourced material. The exception is the Guarda River, which has a slight influence from grasses. The Lignin Phenol Vegetation Index, coupled with acid/aldehyde and 3.5 Db/V ratios, indicate that degraded leaf-derived phenols are also the primary preserved lignin component in the bay. The presence of fringe Typha sp. and Spartina sp. grass beds surrounding portions of the Bay are not reflected in the lignin signature. Instead, lignin entering the bay appears to reflect the erosion of soils containing a degraded signature from the former Atlantic rain forest that once dominated the watershed, instead of containing a significant signature derived from current agricultural uses. A three-component mixing model using the LPVI, atomic N:C ratios, and stable carbon isotopes (which range between -26.8 and -21.8 parts per thousand) supports the hypothesis that fluvial inputs to the bay are dominated by planktonic matter (78% of the input), with lignin dominated by leaf (14% of the input) over grass (6%). Sediments are composed of a roughly 50-50 mixture of autochthonous material and terrigenous material, with lignin being primarily sourced from leaf. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Biofuels are both a promising solution to global warming mitigation and a potential contributor to the problem. Several life cycle assessments of bioethanol have been conducted to address these questions. We performed a synthesis of the available data on Brazilian ethanol production focusing on greenhouse gas (GHG) emissions and carbon (C) sinks in the agricultural and industrial phases. Emissions of carbon dioxide (CO(2)) from fossil fuels, methane (CH(4)) and nitrous oxide (N(2)O) from sources commonly included in C footprints, such as fossil fuel usage, biomass burning, nitrogen fertilizer application, liming and litter decomposition were accounted for. In addition, black carbon (BC) emissions from burning biomass and soil C sequestration were included in the balance. Most of the annual emissions per hectare are in the agricultural phase, both in the burned system (2209 out of a total of 2398 kg C(eq)), and in the unburned system (559 out of 748 kg C(eq)). Although nitrogen fertilizer emissions are large, 111 kg C(eq) ha-1 yr-1, the largest single source of emissions is biomass burning in the manual harvest system, with a large amount of both GHG (196 kg C(eq) ha-1 yr-1). and BC (1536 kg C(eq) ha-1 yr-1). Besides avoiding emissions from biomass burning, harvesting sugarcane mechanically without burning tends to increase soil C stocks, providing a C sink of 1500 kg C ha-1 yr-1 in the 30 cm layer. The data show a C output: input ratio of 1.4 for ethanol produced under the conventionally burned and manual harvest compared with 6.5 for the mechanized harvest without burning, signifying the importance of conservation agricultural systems in bioethanol feedstock production.