915 resultados para Osmotic and ionic regulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conversion of cellular prion protein (PrPc), a GPI-anchored protein, into a protease-K-resistant and infective form (generally termed PrPsc) is mainly responsible for Transmissible Spongiform Encephalopathies (TSEs), characterized by neuronal degeneration and progressive loss of basic brain functions. Although PrPc is expressed by a wide range of tissues throughout the body, the complete repertoire of its functions has not been fully determined. Recent studies have confirmed its participation in basic physiological processes such as cell proliferation and the regulation of cellular homeostasis. Other studies indicate that PrPc interacts with several molecules to activate signaling cascades with a high number of cellular effects. To determine PrPc functions, transgenic mouse models have been generated in the last decade. In particular, mice lacking specific domains of the PrPc protein have revealed the contribution of these domains to neurodegenerative processes. A dual role of PrPc has been shown, since most authors report protective roles for this protein while others describe pro-apoptotic functions. In this review, we summarize new findings on PrPc functions, especially those related to neural degeneration and cell signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis discusses the regulation of foodstuffs and medicines, and particularly the regulation of functional foods. Legal systems investigated are the EU and China. Both are members of the WTO and Codex Alimentarius, which binds European and Chinese rules together. The study uses three Chinese berries as case examples of how product development faces regulation in practice. The berries have traditional uses as herbal medicines. Europe and China have similar nutrition problems to be resolved, such as obesity, cardiovascular disease, and diabetes. The three berries might be suitable raw materials for functional foods. Consumer products with health-enhancing functions, such as lowering blood pressure, might legally be classifi ed either as foodstuffs or medicines. The classifi cation will depend on functions and presentation of the product. In our opinion, food and medicine regulation should come closer together so the classifi cation issue would no longer be an issue. Safety of both foodstuffs and medicines is strictly regulated. With medicines, safety is a more relative concept, where benefi ts of the product are compared to side-effects in thorough scientifi c tests and trials. Foods, on the other hand, are not allowed to have side-effects. Hygiene rules and rules on the use of chemicals apply. In China, food safety is currently at focus as China has had several severe food scandals. Newly developed foods are called novel foods, and are specifi cally regulated. The current European novel food regulation from 1997 treats traditional third country products as novel. The Chinese regulation of 2007 also defi nes novel foods as something unfamiliar to a Chinese consumer. The concepts of novel food thus serve a protectionist purpose. As regards marketing, foods are allowed to bear health claims, whereas medicines bear medicinal claims. The separation is legally strict: foods are not to be presented as having medicinal functions. European nutrition and health claim regulation exists since 2006. China also has its regulation on health foods, listing the permitted claims and how to substantiate them. Health claims are allowed only on health foods. The European rules on medicines include separate categories for herbal medicines, traditional herbal medicines, and homeopathic medicines, where there are differing requirements for scientifi c substantiation. The scientifi c and political grounds for the separate categories provoke criticism. At surface, the Chinese legal system seems similar to the European one. To facilitate trade, China has enacted modern laws. Laws are needed as the country moves from planned economy to market economy: ‘rule of law’ needs to replace ‘rule of man’. Instead of being citizens, Chinese people long were subordinates to the Emperor. Confucius himself advised to avoid confl ict. Still, Chinese people do not and cannot always trust the legal system, as laws are enforced in an inconsistent manner, and courts are weak. In China, there have been problems with confl icting national and local laws. In Europe, the competence of the EU vs. the competence of the Member States is still not resolved, even though the European Commission often states that free trade requires harmonisation. Food and medicine regulation is created by international organisations, food and medicine control agencies, standards agencies, companies and their organisations. Regulation can be divided in ‘hard law’ and ‘soft law’. One might claim that hard law is in crisis, as soft law is gaining importance. If law is out of fashion, regulation certainly isn’t. In the future, ‘law’ might mean a process where rules and incentives are created by states, NGOs, companies, consumers, and other stakeholders. ‘Law’ might thus refer to a constant negotiation between public and private actors. Legal principles such as transparency, equal treatment, and the right to be heard would still be important.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, a procedure is developed for cloud point extraction of Pd(II) and Rh(III) ions in aqueous solution using Span 80 (non-ionic surfactant) prior to their determination by flame atomic absorption spectroscopy. This method is based on the extraction of Pd(II) and Rh(III) ions at a pH of 10 using Span 80 with no chelating agent. We investigated the effect of various parameters on the recovery of the analyte ions, including pH, equilibration temperature and time, concentration of Span 80, and ionic strength. Under the best experimental conditions, the limits of detection based on 3Sb for Pd(II) and Rh(III) ions were 1.3 and 1.2 ng mL-1, respectively. Seven replicate determinations of a mixture of 0.5 µg mL-1 palladium and rhodium ions gave a mean absorbance of 0.058 and 0.053 with relative standard deviations of 1.8 and 1.6%, respectively. The developed method was successfully applied to the extraction and determination of the palladium and rhodium ions in road dust and standard samples and satisfactory results were obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nucleus is a membrane enclosed organelle containing most of the genetic information of the cell in the form of chromatin. The nucleus, which can be divided into many sub-organelles such as the nucleoli, the Cajal bodies and the nuclear lamina, is the site for several essential cellular functions such as the DNA replication and its regulation and most of the RNA synthesis and processing. The nucleus is often affected in disease: the size and the shape of the nucleus, the chromatin distribution and the size of the nucleoli have remained the basis for the grading of several cancers. The maintenance of the vertebrate body shape depends on the skeleton. Similarly, in a smaller context, the shape of the cell and the nucleus are mainly regulated by the cytoskeletal and nucleoskeletal elements. The nuclear matrix, which by definition is a detergent, DNase and salt resistant proteinaceous nuclear structure, has been suggested to form the nucleoskeleton responsible for the nuclear integrity. Nuclear mitotic apparatus protein, NuMA, a component of the nuclear matrix, is better known for its mitotic spindle organizing function. NuMA is one of the nuclear matrix proteins suggested to participate in the maintenance of the nuclear integrity during interphase but its interphase function has not been solved to date. This thesis study concentrated on the role of NuMA and the nuclear matrix as structural and functional components of the interphase nucleus. The first two studies clarified the essential role of caspase-3 in the disintegration of the nuclear structures during apoptosis. The second study also showed NuMA and chromatin to co-elute from cells in significant amounts and the apoptotic cleavage of NuMA was clarified to have an important role in the dissociation of NuMA from the chromatin. The third study concentrated on the interphase function of NuMA showing NuMA depletion to result in cell cycle arrest and the cytoplasmic relocalization of NuMA interaction partner GAS41. We suggest that the relocalization of the transcription factor GAS41 may mediate the cell cycle arrest. Thus, this study has given new aspects in the interactions of NuMA, chromatin and the nuclear matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis focuses on the molecular mechanisms regulating the photosynthetic electron transfer reactions upon changes in light intensity. To investigate these mechanisms, I used mutants of the model plant Arabidopsis thaliana impaired in various aspects of regulation of the photosynthetic light reactions. These included mutants of photosystem II (PSII) and light harvesting complex II (LHCII) phosphorylation (stn7 and stn8), mutants of energy-dependent non-photochemical quenching (NPQ) (npq1 and npq4) and of regulation of photosynthetic electron transfer (pgr5). All of these processes have been extensively investigated during the past decades, mainly on plants growing under steady-state conditions, and therefore many aspects of acclimation processes may have been neglected. In this study, plants were grown under fluctuating light, i.e. the alternation of low and high intensities of light, in order to maximally challenge the photosynthetic regulatory mechanisms. In pgr5 and stn7 mutants, the growth in fluctuating light condition mainly damaged PSI while PSII was rather unaffected. It is shown that the PGR5 protein regulates the linear electron transfer: it is essential for the induction of transthylakoid ΔpH that, in turn, activates energy-dependent NPQ and downregulates the activity of cytochrome b6f. This regulation was shown to be essential for the photoprotection of PSI under fluctuations in light intensity. The stn7 mutants were able to acclimate under constant growth light conditions by modulating the PSII/PSI ratio, while under fluctuating growth light they failed in implementing this acclimation strategy. LHCII phosphorylation ensures the balance of the excitation energy distribution between PSII and PSI by increasing the probability for excitons to be trapped by PSI. LHCII can be phosphorylated over all of the thylakoid membrane (grana cores as well as stroma lamellae) and when phosphorylated it constitutes a common antenna for PSII and PSI. Moreover, LHCII was shown to work as a functional bridge that allows the energy transfer between PSII units in grana cores and between PSII and PSI centers in grana margins. Consequently, PSI can function as a quencher of excitation energy. Eventually, the LHCII phosphorylation, NPQ and the photosynthetic control of linear electron transfer via cytochrome b6f work in concert to maintain the redox poise of the electron transfer chain. This is a prerequisite for successful plant growth upon changing natural light conditions, both in short- and long-term.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The safety of shipping operations in the Baltic Sea is an extensively studied issue due to the density of traffic and the ecological sensitivity of the area. The focus has, however, mainly been on ship technology or on traffic control measures and the operative safety aspect of shipping is in a minor position in maritime safety studies and is lacking in terms of solutions. Self-regulatory and voluntary measures could be effective ways to improve the operational safety of shipping. Corporate social responsibility, or CSR, is one example of a voluntary measure that the shipping companies can take. CSR can enhance maritime safety and improve the shipping companies’ competitiveness. The aim of this study is to increase the knowledge of CSR in the maritime sector and study its applicability and benefits to the shipping companies. The research comprises of a theory part and a questionnaire study, which examine the significance of corporate social responsibility in shipping companies’ maritime safety and competitiveness. The aim of the questionnaire study is to find out how corporate social responsibility is implemented in the shipping companies. According to the literature review, responsible actions can produce financial and time costs, but due to these actions cost savings in the form of learning and increased efficiency can be achieved. Responsible actions can also produce concrete improvements and a reputation of responsibility that can lead to both cost savings and increase in the company’s income. CSR is recognised as having real business benefits in terms of attracting customers and high-quality employees. In shipping, CSR usually focuses on environmental issues. Environmental social responsibility in shipping is mainly motivated by the need to comply with existing and forthcoming regulation. Shipping companies engage in CSR to gain competitive advantage and to increase maritime safety. The social aspects of CSR take into account the well-being and skills of the employees, corporation and other stakeholders of the company. The questionnaire study revealed that the most common CSR measures in shipping companies are environmental measures, and that environmental concerns are considered to be the most important reason to engage in CSR. From the preliminary question about the concept of CSR it can also be seen that safety issues are commonly considered to be a part of CSR and safety gains are the second most important reason to engage in CSR. From the questionnaire, it can also be extrapolated that gaining a better reputation is one of the most important reasons to engage in CSR in the first place. For example, the main economic benefit was seen to be the increase of customer numbers as a result of a better reputation. Based on the study, it would seem that companies are starting to realise that they might gain competitive advantage and be favoured as shippers if they engage in sustainable, responsible operations and present themselves as “green”.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this research work, the aim was to investigate the volumetric mass transfer coefficient [kLa] of oxygen in stirred tank in the presence of solid particle experimentally. The kLa correlations as a function of propeller rotation speed and flow rate of gas feed were studied. The O2 and CO2 absorption in water and in solid-liquid suspensions and heterogeneous precipitation of MgCO3 were thoroughly examined. The absorption experiments of oxygen were conducted in various systems like pure water and in aqueous suspensions of quartz and calcium carbonate particles. Secondly, the precipitation kinetics of magnesium carbonate was also investigated. The experiments were performed to study the reactive crystallization with magnesium hydroxide slurry and carbon dioxide gas by varying the feed rates of carbon dioxide and rotation speeds of mixer. The results of absorption and precipitation are evaluated by titration, total carbon (TC analysis), and ionic chromatrography (IC). For calcium carbonate, the particle concentration was varied from 17.4 g to 2382 g with two size fractions: 5 µm and 45-63 µm sieves. The kLa and P/V values of 17.4 g CaCO3 with particle size of 5µm and 45-63 µm were 0.016 s-1 and 2400 W/m3. At 69.9 g concentration of CaCO3, the achieved kLa is 0.014 s-1 with particle size of 5 µm and 0.017 s-1 with particle size of 45 to 63 µm. Further increase in concentration of calcium carbonate, i.e. 870g and 2382g , does not affect volumetric mass transfer coeffienct of oxygen. It could be concluded from absorption results that maximum value of kLa is 0.016 s-1. Also particle size and concentration does affect the transfer rate to some extend. For precipitation experiments, the constant concentration of Mg(OH)2 was 100 g and the rotation speed varied from 560 to 750 rpm, whereas the used feed rates of CO2 were 1 and 9 L/min. At 560 rpm and feed rate of CO2 is 1 L/min, the maximum value of Mg ion and TC were 0.25 mol/litre and 0.12 mol/litre with the residence time of 40 min. When flow rate of CO2 increased to 9 L/min with same 560 rpm, the achieved value of Mg and TC were 0.3 mol/litre and 0.12 mol/L with shorter residence time of 30 min. It is concluded that feed rate of CO2 is dominant in precipitation experiments and it has a key role in dissociation and reaction of magnesium hydroxide in precipitation of magnesium carbonate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Follicle-stimulating hormone (FSH) and insulin regulate glycide metabolism in Sertoli cells, thus stimulating lactate production. These stimulatory effects of FSH and insulin do not require protein synthesis, suggesting a modulation of enzyme activity and/or regulation of glucose transport. The present investigation was performed to characterize the hormonal control of lipid metabolism in Sertoli cells. The data indicate that FSH and insulin have a regulatory effect on lipid metabolism in Sertoli cells. After 8 h of preincubation with insulin (5 µg/ml), the activity of the enzyme ATP-citrate lyase in cultured Sertoli cells was increased from 0.19 to 0.34 nmol NAD+ formed µg protein-1 min-1. FSH (100 ng/ml) had no effect on this enzyme. Glycerol phosphate dehydrogenase activity was not affected by any of the hormones tested. When Sertoli cells from 19-day old rats were incubated with [1,2­14C]acetate for 90 or 360 min, the [14C] label was present predominantly in triglyceride and phospholipid fractions with minor amounts in other lipids. In Sertoli cells pretreated for 16 h with insulin and FSH, an increase in acetate incorporation into lipids was observed. Most of the label was in esterified lipids and this percentage increased with the time of treatment; this increase was remarkable in triglycerides of control cells (18.8% to 30.6%). Since Sertoli cell triglycerides participate in the control of spermatogenesis, the present data suggest that the hormonal control of lipid metabolism in Sertoli cells is important not only for maintaining the energy of the cell itself, but also for the control of the spermatogenesis process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

G protein-coupled receptor (GPCR) activation is followed rapidly by adaptive changes that serve to diminish the responsiveness of a cell to further stimulation. This process, termed desensitization, is the consequence of receptor phosphorylation, arrestin binding, sequestration and down-regulation. GPCR phosphorylation is initiated within seconds to minutes of receptor activation and is mediated by both second messenger-dependent protein kinases and receptor-specific G protein-coupled receptor kinases (GRKs). Desensitization in response to GRK-mediated phosphorylation involves the binding of arrestin proteins that serve to sterically uncouple the receptor from its G protein. GPCR sequestration, the endocytosis of receptors to endosomes, not only contributes to the temporal desensitization of GPCRs, but plays a critical role in GPCR resensitization. GPCR down-regulation, a loss of the total cellular complement of receptors, is the consequence of both increased lysosomal degradation and decreased mRNA synthesis of GPCRs. While each of these agonist-mediated desensitization processes are initiated within a temporally dissociable time frame, recent data suggest that they are intimately related to one another. The use of green fluorescent protein from the jellyfish Aqueora victoria as an epitope tag with intrinsic fluorescence has facilitated our understanding of the relative relationship between GRK phosphorylation, arrestin binding, receptor sequestration and down-regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell interactions with extracellular matrices are important to pathological changes that occur during cell transformation and tumorigenesis. Several extracellular matrix proteins including fibronectin, thrombospondin-1, laminin, SPARC, and osteopontin have been suggested to modulate tumor phenotype by affecting cell migration, survival, or angiogenesis. Likewise, proteases including the matrix metalloproteinases (MMPs) are understood to not only facilitate migration of cells by degradation of matrices, but also to affect tumor formation and growth. We have recently demonstrated an in vivo role for the RGD-containing protein, osteopontin, during tumor progression, and found evidence for distinct functions in the host versus the tumor cells. Because of the compartmentalization and temporal regulation of MMP expression, it is likely that MMPs may also function dually in host stroma and the tumor cell. In addition, an important function of proteases appears to be not only degradation, but also cleavage of matrix proteins to generate functionally distinct fragments based on receptor binding, biological activity, or regulation of growth factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known that the responses to vasoactive kinin peptides are mediated through the activation of two receptors termed bradykinin receptor B1 (B1R) and B2 (B2R). The physiologically prominent B2R subtype has certainly been the subject of more intensive efforts in structure-function studies and physiological investigations. However, the B1R activated by a class of kinin metabolites has emerged as an important subject of investigation within the study of the kallikrein-kinin system (KKS). Its inducible character under stress and tissue injury is therefore a field of major interest. Although the KKS has been associated with cardiovascular regulation since its discovery at the beginning of the last century, less is known about the B1R and B2R regulation in cardiovascular diseases like hypertension, myocardial infarction (MI) and their complications. This mini-review will summarize our findings on B1R and B2R regulation after induction of MI using a rat model. We will develop the hypothesis that differences in the expression of these receptors may be associated with a dual pathway of the KKS in the complex mechanisms of myocardial remodeling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A growing body of evidence supports the concept of fetal programming in cardiovascular disease in man, which asserts that an insult experienced in utero exerts a long-term influence on cardiovascular function, leading to disease in adulthood. However, this hypothesis is not universally accepted, hence animal models may be of value in determining potential physiological mechanisms which could explain how fetal undernutrition results in cardiovascular disease in later life. This review describes two major animal models of cardiovascular programming, the in utero protein-restricted rat and the cross-fostered spontaneously hypertensive rat. In the former model, moderate maternal protein restriction during pregnancy induces an increase in offspring blood pressure of 20-30 mmHg. This hypertensive effect is mediated, in part, by fetal exposure to excess maternal glucocorticoids as a result of a deficiency in placental 11-ß hydroxysteroid dehydrogenase type 2. Furthermore, nephrogenesis is impaired in this model which, coupled with increased activity of the renin-angiotensin system, could also contribute to the greater blood pressure displayed by these animals. The second model discussed is the cross-fostered spontaneously hypertensive rat. Spontaneously hypertensive rats develop severe hypertension without external intervention; however, their adult blood pressure may be lowered by 20-30 mmHg by cross-fostering pups to a normotensive dam within the first two weeks of lactation. The mechanisms responsible for this antihypertensive effect are less clear, but may also involve altered renal function and down-regulation of the renin-angiotensin system. These two models clearly show that adult blood pressure is influenced by exposure to one of a number of stimuli during critical stages of perinatal development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diseases such as hypertension, atherosclerosis, hyperlipidemia, and diabetes are associated with vascular functional and structural changes including endothelial dysfunction, altered contractility and vascular remodeling. Cellular events underlying these processes involve changes in vascular smooth muscle cell (VSMC) growth, apoptosis/anoikis, cell migration, inflammation, and fibrosis. Many factors influence cellular changes, of which angiotensin II (Ang II) appears to be amongst the most important. The physiological and pathophysiological actions of Ang II are mediated primarily via the Ang II type 1 receptor. Growing evidence indicates that Ang II induces its pleiotropic vascular effects through NADPH-driven generation of reactive oxygen species (ROS). ROS function as important intracellular and intercellular second messengers to modulate many downstream signaling molecules, such as protein tyrosine phosphatases, protein tyrosine kinases, transcription factors, mitogen-activated protein kinases, and ion channels. Induction of these signaling cascades leads to VSMC growth and migration, regulation of endothelial function, expression of pro-inflammatory mediators, and modification of extracellular matrix. In addition, ROS increase intracellular free Ca2+ concentration ([Ca2+]i), a major determinant of vascular reactivity. ROS influence signaling molecules by altering the intracellular redox state and by oxidative modification of proteins. In physiological conditions, these events play an important role in maintaining vascular function and integrity. Under pathological conditions ROS contribute to vascular dysfunction and remodeling through oxidative damage. The present review focuses on the biology of ROS in Ang II signaling in vascular cells and discusses how oxidative stress contributes to vascular damage in cardiovascular disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

T84 is an established cell line expressing an enterocyte phenotype whose permeability properties have been widely explored. Osmotic permeability (P OSM), hydraulic permeability (P HYDR) and transport-associated net water fluxes (J W-transp), as well as short-circuit current (I SC), transepithelial resistance (R T), and potential difference (deltaV T) were measured in T84 monolayers with the following results: P OSM 1.3 ± 0.1 cm.s-1 x 10-3; P HYDR 0.27 ± 0.02 cm.s-1; R T 2426 ± 109 omega.cm², and deltaV T 1.31 ± 0.38 mV. The effect of 50 µM 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one (DCEBIO), a "net Cl- secretory agent", on T84 cells was also studied. We confirm the reported important increase in I SC induced by DCEBIO which was associated here with a modest secretory deltaJ W-transp. The present results were compared with those reported using the same experimental approach applied to established cell lines originating from intestinal and renal epithelial cells (Caco-2, LLC-PK1 and RCCD-1). No clear association between P HYDR and R T could be demonstrated and high P HYDR values were observed in an electrically tight epithelium, supporting the view that a "water leaky" barrier is not necessarily an "electrically leaky" one. Furthermore, the modest secretory deltaJ W-transp was not consistent with previous results obtained with RCCD-1 cells stimulated with vasopressin (absorptive fluxes) or with T84 cells secreting water under the action of Escherichia coli heat stable enterotoxin. We conclude that, while the presence of aquaporins is necessary to dissipate an external osmotic gradient, coupling between water and ion transport cannot be explained by a simple and common underlying mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We assessed the effect of chronic hyperglycemia on bone mineral density (BMD) and bone remodeling in patients with type 2 diabetes mellitus. We investigated 42 patients with type 2 diabetes under stable control for at least 1 year, 22 of them with good metabolic control (GMC: mean age = 48.8 ± 1.5 years, 11 females) and 20 with poor metabolic control (PMC: mean age = 50.2 ± 1.2 years, 8 females), and 24 normal control individuals (CG: mean age = 46.5 ± 1.1 years, 14 females). We determined BMD in the femoral neck and at the L2-L4 level (DEXA) and serum levels of glucose, total glycated hemoglobin (HbA1), total and ionic calcium, phosphorus, alkaline phosphatase, follicle-stimulating hormone, intact parathyroid hormone (iPTH), 25-hydroxyvitamin D (25-OH-D), insulin-like growth factor I (IGFI), osteocalcin, procollagen type I C propeptide, as well as urinary levels of deoxypyridinoline and creatinine. HbA1 levels were significantly higher in PMC patients (12.5 ± 0.6 vs 7.45 ± 0.2% for GMC and 6.3 ± 0.9% for CG; P < 0.05). There was no difference in 25-OH-D, iPTH or IGFI levels between the three groups. BMD values at L2-L4 (CG = 1.068 ± 0.02 vs GMC = 1.170 ± 0.03 vs PMC = 1.084 ± 0.02 g/cm²) and in the femoral neck (CG = 0.898 ± 0.03 vs GMC = 0.929 ± 0.03 vs PMC = 0.914 ± 0.03 g/cm²) were similar for all groups. PMC presented significantly lower osteocalcin levels than the other two groups, whereas no significant difference in urinary deoxypyridine was observed between groups. The present results demonstrate that hyperglycemia is not associated with increased bone resorption in type 2 diabetes mellitus and that BMD is not altered in type 2 diabetes mellitus.