998 resultados para Organic moderated reactors
Resumo:
Reactive interlayers consisting of zero valent iron and copper nanoparticles have been successfully incorporated into Surlyn films to fabricate moisture barrier materials with reduced water vapor permeabilities. The reactive nanoparticles dispersed in stearic acid were employed as the interlayers due to their ability to react with moisture. The water vapor transmission rates through the fabricated barrier films with reactive iron and copper interlayers decreased by over 4 orders of magnitude when compared to neat Surlyn. The flexibility and transparency of the barrier films have been evaluated by tensile and UV-visible experiments. Moreover, the accelerated aging studies conducted in accordance with the ISOS-III protocol confirmed the increased lifetimes of the organic photovoltaic (OPV) devices encapsulated with these reactive barrier films.
Resumo:
Recent studies on small-scale power generation with the organic Rankine cycle suggest superior performance of positive displacement type of expanders compared to turbines. Scroll expanders in particular achieve high isentropic efficiencies due to lower leakage and frictional losses. Performance of scroll machines may be enhanced by the use of non-circular involute curves in place of the circular involutes resulting non-uniform wall thickness. In this paper, a detailed moment analysis is performed for such an expander having volumetric expansion ratio of 5 using thermodynamic models proposed earlier by one of the present authors. The working fluid considered in the power cycle is R-245fa with scroll inlet temperature of 125 degrees C for a gross power output of similar to 3.5 kW. The model developed in this paper is verified with an air scroll compressor available in the literature and then applied to an expander Prediction of small variation of moment with scroll motion recommends use of scroll expander without a flywheel over other positive displacement type of expanders, e.g. reciprocating, where a flywheel is an essential component.
Resumo:
The major challenges in Li-S batteries are the formation of soluble polysulphides during the reversible conversion of S-8 <-> Li2S, large changes in sulphur particle volume during lithiation and extremely poor charge transport in sulphur. We demonstrate here a novel and simple strategy to overcome these challenges towards practical realization of a stable high performance Li-S battery. For the first time, a strategy is developed which does away with the necessity of pre-fabricated high surface area hollow-structured adsorbates and also multiple nontrivial synthesis steps related to sulphur loading inside such adsorbates. A lithiated polyethylene glycol (PEG) based surfactant tethered on ultra-small sulphur nanoparticles and wrapped up with polyaniline (PAni) (abbreviated as S-MIEC) is demonstrated here as an exceptional cathode for Li-S batteries. The PEG and PAni network around the sulphur nanoparticles serves as an efficient flexible trap for sulphur and polysulphides and also provides distinct pathways for electrons (through PAni) and ions (through PEG) during battery operation. Contrary to the cathodes demonstrated based on various carbon-sulphur composites, the mixed conducting S-MIEC showed an extremely high loading of 75%. The S-MIEC exhibited a stable capacity of nearly 900 mA h g(-1) at the end of 100 cycles at a 1C current rate.
Resumo:
The rare occurrence of intramolecular hydrogen bonds (HBs) of the type N-H center dot center dot center dot F-C is detected in the derivatives of imides in a low polarity solvent by using multi-dimensional and multinuclear NMR experiments. The observation of (1h)J(FH), (2h)J(FN), and (2h)J(FF), where the spin magnetization is transmitted through space among the interacting NMR active nuclei, provided strong and unambiguous evidence for the existence of intra-molecular HBs. The variation in the chemical shifts of labile protons depending on physical conditions, such as the solvent dilution and the systematic alteration of temperature confirmed the presence of weak interactions through intramolecular HBs in all the investigated fluorine substituted molecules. The self or cross dimerization of molecules is unequivocally discarded by the analysis of the rates of diffusion obtained using pseudo-two dimensional DOSY experiments. The Density Function Theory (DFT) calculations based on the Quantum Theory of Atoms In Molecules (QTAIM) and Non Covalent Interaction (NCI), are in close agreement with the NMR experimental findings.
Resumo:
Power densities required to operate active-matrix organic-light-emitting diode (AMOLED) based displays for high luminance applications, lead to temperature rise due to self heating. Temperature rise leads to significant degradation and consequent reduction in life time. In this work numerical techniques based computational fluid dynamics (CFD) is used to determine the temperature rise and its distribution for an AMOLED based display for a given power density and size. Passive cooling option in form of protruded rectangular fins is implemented to reduce the display temperature.
Resumo:
Beyond product design, if the notion of product `lifecycle design' enforces the consideration of requirements from all the lifecycle phases of products, design for sustainability enforces the consideration of lifecycle design in the context of the lifecycles of other products, processes, institutions and their design. Consequently, sustainability requirements that need to be met by design are very diverse. In this article, we portray the nature of design process to address sustainability requirements. This is done taking an example of designing a urban household organic waste management system that requires less water and reclaims the nutrients.
Resumo:
Rates of hydrogen/deuterium (H/D) exchange determined by H-1 NMR spectroscopy are utilized to derive the strength of hydrogen bonds and to monitor the electronic effects in the site-specific halogen substituted benzamides and anilines. The theoretical fitting of the time dependent variation of the integral areas of H-1 NMR resonances to the first order decay function permitted the determination of HID exchange rate constants (k) and their precise half-lives (t(1/2)) with high degree of reproducibility. The comparative study also permitted the unambiguous determination of relative strength of hydrogen bonds and the contribution from electronic effects on the HID exchange rate. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
In this study, we report synthesis of symmetrically and non-symmetrically functionalized fluoranthene-based blue fluorescent molecular materials for non-doped electroluminescent devices. The solid state structure of these fluorophores has been established by single crystal X-ray diffraction analysis. Furthermore, a detailed experimental and theoretical study has been performed to understand the effect of substitution of symmetric and non-symmetric functional groups on optical, thermal and electrochemical properties of fluoranthene. These materials exhibit a deep blue emission and high PLQY in solution and solid state. The vacuum deposited, non-doped electroluminescent devices with the device structure ITO/NPD (15 nm)/CBP (15 nm)/EML (40 nm)/TPBI (30 nm)/LiF (1 nm)/Al were fabricated and characterized. A systematic shift in the peak position of EL emission was observed from sky blue to bluish-green with EL maxima from 477 nm to 490 nm due to different functional groups on the periphery of fluoranthene. In addition, a high luminance of >= 2000 cd m(-2) and encouraging external quantum efficiency (EQE) of 1.1-1.4% were achieved. A correlation of the molecular structure with device performance has been established.
Resumo:
Sea level rise (SLR) is a primary factor responsible for inundation of low-lying coastal regions across the world, which in turn governs the agricultural productivity. In this study, rice (Oryza sativa L.) cultivated seasonally in the Kuttanad Wetland, a SLR prone region on the southwest coast of India, were analysed for oxygen, hydrogen and carbon isotopic ratios (delta O-18, delta H-2 and delta C-13) to distinguish the seasonal environmental conditions prevalent during rice cultivation. The region receives high rainfall during the wet season which promotes large supply of fresh water to the local water bodies via the rivers. In contrast, during the dry season reduced river discharge favours sea water incursion which adversely affects the rice cultivation. The water for rice cultivation is derived from regional water bodies that are characterised by seasonal salinity variation which co-varies with the delta O-18 and delta H-2 values. Rice cultivated during the wet and the dry season bears the isotopic imprints of this water. We explored the utility of a mechanistic model to quantify the contribution of two prominent factors, namely relative humidity and source water composition in governing the seasonal variation in oxygen isotopic composition of rice grain OM. delta C-13 values of rice grain OM were used to deduce the stress level by estimating the intrinsic water use efficiency (WUEi) of the crop during the two seasons. 1.3 times higher WUE, was exhibited by the same genotype during the dry season. The approach can be extended to other low lying coastal agro-ecosystems to infer the growth conditions of cultivated crops and can further be utilised for retrieving paleo-environmental information from well preserved archaeological plant remains. (c) 2015 Elsevier Ltd. All rights reserved.
Resumo:
In Pt-transition metal (TM) alloy catalysts, the electron transfer from the TM to Pt is retarded owing to the inevitable oxidation of the TM surface by oxygen. In addition, acidic electrolytes such as those employed in fuel cells accelerate the dissolution of the surface TM oxide, which leads to catalyst degradation. Herein, we propose a novel synthesis strategy that selectively modifies the electronic structure of surface Co atoms with N-containing polymers, resulting in highly active and durable PtCo nanoparticle catalysts useful for the oxygen reduction reaction (ORR). The polymer, which is functionalized on carbon black, selectively interacts with the Co precursor, resulting in Co-N bond formation on the PtCo nanoparticle surface. Electron transfer from Co to Pt in the PtCo nanoparticles modified by the polymer is enhanced by the increase in the difference in electronegativity between Pt and Co compared with that in bare PtCo nanoparticles with the TM surface oxides. In addition, the dissolution of Co and Pt is prevented by the selective passivation of surface Co atoms and the decrease in the O-binding energy of surface Pt atoms. As a result, the catalytic activity and durability of PtCo nanoparticles for the ORR are significantly improved by the electronic ensemble effects. The proposed organic/inorganic hybrid concept will provide new insights into the tuning of nanomaterials consisting of heterogeneous metallic elements for various electrochemical and chemical applications.
Resumo:
We have investigated the multiferroic and glassy behaviour of metal-organic framework (MOF) material (CH3)(2)NH2Co(CHOO)(3). The compound has perovskite-like architecture in which the metal-formate forms a framework. The organic cation (CH3)(2)NH2+ occupies the cavities in the formate framework in the framework via N-H center dot center dot center dot O hydrogen bonds. At room temperature, the organic cation is disordered and occupies three crystallographically equivalent positions. Upon cooling, the organic cation is ordered which leads to a structural phase transition at 155 K. The structural phase transition is associated with a para-ferroelectric phase transition and is revealed by dielectric and pyroelectric measurements. Further, a PE hysteresis loop below 155 K confirms the ferroelectric behaviour of the material. Analysis of dielectric data reveal large frequency dispersion in the values of dielectric constant and tan delta which signifies the presence of glassy dielectric behaviour. The material displays a antiferromagnetic ordering below 15 K which is attributed to the super-exchange interaction between Co2+ ions mediated via formate linkers. Interestingly, another magnetic transition is also found around 11 K. The peak of the transition shifts to lower temperature with increasing frequency, suggesting glassy magnetism in the sample. (C) 2016 AIP Publishing LLC.
Resumo:
In this work, polymer diode performance was analyzed by using nickel as anode electrode from two kinds of nickel as starting materials, namely nickel wire Ni{B} and nickel nano-particle Ni{N}. Metal electrode surface roughness and grain morphology were investigated by atomic force microscope and scanning electron microscope, respectively. Current-voltage (I-V) and capacitance-voltage (C-V) characteristics were measured for the fabricated device at room temperature. Obtained result from the current-voltage characteristics shows an increment in the current density for nickel nano-particle top electrode device. The increase in the current density could be due to a reduction in built-in voltage at P3HT/Ni{N} interface.
Resumo:
Recent advancements of material science and its applications have been immensely influenced by the modern development of organic luminescent materials. Among all organic luminogens, boron containing compounds have already established their stature as one of the indispensable classes of luminescent dyes. Boron, in its various forms e. g. triarylboranes, borate dyes and boron clusters, has attracted considerable attention owing to its several unique and excellent photophysical features. In very recent times, beyond the realms of solution-state studies, luminescent boron-containing compounds have emerged as a large and versatile class of stimuli responsive materials. Based on several fundamental concepts of chemistry, researchers have come up with an admirable variety of boron-containing materials with AIE (aggregation-induced emission), mechano-responsive luminescence, thermoresponsive-luminescence as well as a number of purely organic phosphorescent materials and other standalone examples. The unique chemical as well as physical properties of boron-containing compounds are largely responsible for the development of such materials. In this review these new findings are brought together.
Resumo:
The type of nanostructure referred to in biomineralization as a mineral bridge has been directly observed and measured in the organic matrix layers of nacre by transmission electron microscopy and scanning electron microscopy. Statistical analysis provides the geometric characteristics and a distribution law of the mineral bridges in the organic matrix layers. Experiments reveal that the nanostructures significantly influences the mechanical properties of the organic matrix layers. In addition, the mechanical analysis illustrates the effects of the nanostructures on the behaviors of the organic matrix layers, and the analytical results explain the corresponding experimental phenomena fairly well. The present study shows that the mineral bridges play a key role in the mechanical performances of the organic matrix layers of nacre. The results obtained provide a guide to the interfacial design of synthetic materials.
Resumo:
The direct observation of a type of microstructure in the organic matrix layers of nacre was obtained with a transmission electron microscope. The microstructure, which is referred to as mineral bridge in the biomineralization, is nanoscale and randomly distributed in the layers. Statistical analysis gives the distribution laws and characteristics of mineral bridges in the organic matrix layers. The existence of mineral bridges in nacre was confirmed, and it was shown that the microarchitecture of nacre should be described as a "brick-bridge-mortar" arrangement rather than traditional "brick and mortar" one.