933 resultados para Operator Error
Resumo:
Whether the use of mobile phones is a risk factor for brain tumors in adolescents is currently being studied. Case--control studies investigating this possible relationship are prone to recall error and selection bias. We assessed the potential impact of random and systematic recall error and selection bias on odds ratios (ORs) by performing simulations based on real data from an ongoing case--control study of mobile phones and brain tumor risk in children and adolescents (CEFALO study). Simulations were conducted for two mobile phone exposure categories: regular and heavy use. Our choice of levels of recall error was guided by a validation study that compared objective network operator data with the self-reported amount of mobile phone use in CEFALO. In our validation study, cases overestimated their number of calls by 9% on average and controls by 34%. Cases also overestimated their duration of calls by 52% on average and controls by 163%. The participation rates in CEFALO were 83% for cases and 71% for controls. In a variety of scenarios, the combined impact of recall error and selection bias on the estimated ORs was complex. These simulations are useful for the interpretation of previous case-control studies on brain tumor and mobile phone use in adults as well as for the interpretation of future studies on adolescents.
Resumo:
Medical errors are a serious threat to chemotherapy patients. Patients can make contributions to safety but little is known about the acceptability of error-preventing behaviors and its predictors.
Resumo:
The purpose of this study was (1) to determine frequency and type of medication errors (MEs), (2) to assess the number of MEs prevented by registered nurses, (3) to assess the consequences of ME for patients, and (4) to compare the number of MEs reported by a newly developed medication error self-reporting tool to the number reported by the traditional incident reporting system. We conducted a cross-sectional study on ME in the Cardiovascular Surgery Department of Bern University Hospital in Switzerland. Eligible registered nurses (n = 119) involving in the medication process were included. Data on ME were collected using an investigator-developed medication error self reporting tool (MESRT) that asked about the occurrence and characteristics of ME. Registered nurses were instructed to complete a MESRT at the end of each shift even if there was no ME. All MESRTs were completed anonymously. During the one-month study period, a total of 987 MESRTs were returned. Of the 987 completed MESRTs, 288 (29%) indicated that there had been an ME. Registered nurses reported preventing 49 (5%) MEs. Overall, eight (2.8%) MEs had patient consequences. The high response rate suggests that this new method may be a very effective approach to detect, report, and describe ME in hospitals.
Resumo:
While beneficially decreasing the necessary incision size, arthroscopic hip surgery increases the surgical complexity due to loss of joint visibility. To ease such difficulty, a computer-aided mechanical navigation system was developed to present the location of the surgical tool relative to the patient¿s hip joint. A preliminary study reduced the position error of the tracking linkage with limited static testing trials. In this study, a correction method, including a rotational correction factor and a length correction function, was developed through more in-depth static testing. The developed correction method was then applied to additional static and dynamic testing trials to evaluate its effectiveness. For static testing, the position error decreased from an average of 0.384 inches to 0.153 inches, with an error reduction of 60.5%. Three parameters utilized to quantify error reduction of dynamic testing did not show consistent results. The vertex coordinates achieved 29.4% of error reduction, yet with large variation in the upper vertex. The triangular area error was reduced by 5.37%, however inconsistent among all five dynamic trials. Error of vertex angles increased, indicating a shape torsion using the developed correction method. While the established correction method effectively and consistently reduced position error in static testing, it did not present consistent results in dynamic trials. More dynamic paramters should be explored to quantify error reduction of dynamic testing, and more in-depth dynamic testing methodology should be conducted to further improve the accuracy of the computer-aided nagivation system.