970 resultados para Open-Source
Resumo:
La elección de un programa de gestión de bibliotecas se ve afectada muchas veces por una serie de condiciones sociales, económicas y políticas que hacen que la elección no sea la más adecuada para las necesidades, características y funciones de la biblioteca. El software libre está siendo una de las soluciones más optadas, por sus libertades de copia, modificación y distribución, además de la libertad de licencias y las posibilidades de interoperación con otras aplicaciones. Esta nueva tendencia hacia el software libre en bibliotecas se refleja también en los estudios de biblioteconomía y documentación, en los que desde diferentes asignaturas se aportan conocimientos sobre programas de automatización, de gestión de repositorios, incluso del sistema operativo Linux/GNU, entre otros. Esta combinación entre las necesidades de los centros y la tendencia al uso de software libre, es la que un grupo de profesores de la Facultat de Biblioteconomia i Documentació (Universitat de Barcelona) y estudiantes, miembros del Grup de Treball sobre Programari Lliure per als Professionals de la Informació (Cobdc), han querido aportar a la comunidad profesional, creando un laboratorio virtual para el uso de software libre de aplicación en bibliotecas.
Resumo:
Informe sobre el 4th International LIS-EPI Meeting que tuvo lugar en Valencia en noviembre de 2009 bajo el lema ¿La información en 2015¿. Los temas que se trataron fueron el futuro del sector de la información y de las bibliotecas, las rich internet applications (RIAs), el software libre en bibliotecas, el acceso abierto y los dispositivos móviles
Resumo:
Después de leer el artículo "El sistema de las Creative Commons" de Marco Marandola1, me gustaría presentar de manera más completa el proyecto de las licencias de Creative commons. Actualmente las palabras copyleft, copyright, open access, creative commons, procomún, se utilizan mucho pero a veces se mezclan conceptos y se informa de manera errónea. Agradezco a los editores la posibilidad de escribir esta nota que personalmente considero de rectificación.
Resumo:
Podeu consultar la versió en castellà a http://hdl.handle.net/2445/8959
Resumo:
Podeu consultar la versió en català a http://hdl.handle.net/2445/8958
Resumo:
BACKGROUND: Qualitative frameworks, especially those based on the logical discrete formalism, are increasingly used to model regulatory and signalling networks. A major advantage of these frameworks is that they do not require precise quantitative data, and that they are well-suited for studies of large networks. While numerous groups have developed specific computational tools that provide original methods to analyse qualitative models, a standard format to exchange qualitative models has been missing. RESULTS: We present the Systems Biology Markup Language (SBML) Qualitative Models Package ("qual"), an extension of the SBML Level 3 standard designed for computer representation of qualitative models of biological networks. We demonstrate the interoperability of models via SBML qual through the analysis of a specific signalling network by three independent software tools. Furthermore, the collective effort to define the SBML qual format paved the way for the development of LogicalModel, an open-source model library, which will facilitate the adoption of the format as well as the collaborative development of algorithms to analyse qualitative models. CONCLUSIONS: SBML qual allows the exchange of qualitative models among a number of complementary software tools. SBML qual has the potential to promote collaborative work on the development of novel computational approaches, as well as on the specification and the analysis of comprehensive qualitative models of regulatory and signalling networks.
Resumo:
Introduction: The field of Connectomic research is growing rapidly, resulting from methodological advances in structural neuroimaging on many spatial scales. Especially progress in Diffusion MRI data acquisition and processing made available macroscopic structural connectivity maps in vivo through Connectome Mapping Pipelines (Hagmann et al, 2008) into so-called Connectomes (Hagmann 2005, Sporns et al, 2005). They exhibit both spatial and topological information that constrain functional imaging studies and are relevant in their interpretation. The need for a special-purpose software tool for both clinical researchers and neuroscientists to support investigations of such connectome data has grown. Methods: We developed the ConnectomeViewer, a powerful, extensible software tool for visualization and analysis in connectomic research. It uses the novel defined container-like Connectome File Format, specifying networks (GraphML), surfaces (Gifti), volumes (Nifti), track data (TrackVis) and metadata. Usage of Python as programming language allows it to by cross-platform and have access to a multitude of scientific libraries. Results: Using a flexible plugin architecture, it is possible to enhance functionality for specific purposes easily. Following features are already implemented: * Ready usage of libraries, e.g. for complex network analysis (NetworkX) and data plotting (Matplotlib). More brain connectivity measures will be implemented in a future release (Rubinov et al, 2009). * 3D View of networks with node positioning based on corresponding ROI surface patch. Other layouts possible. * Picking functionality to select nodes, select edges, get more node information (ConnectomeWiki), toggle surface representations * Interactive thresholding and modality selection of edge properties using filters * Arbitrary metadata can be stored for networks, thereby allowing e.g. group-based analysis or meta-analysis. * Python Shell for scripting. Application data is exposed and can be modified or used for further post-processing. * Visualization pipelines using filters and modules can be composed with Mayavi (Ramachandran et al, 2008). * Interface to TrackVis to visualize track data. Selected nodes are converted to ROIs for fiber filtering The Connectome Mapping Pipeline (Hagmann et al, 2008) processed 20 healthy subjects into an average Connectome dataset. The Figures show the ConnectomeViewer user interface using this dataset. Connections are shown that occur in all 20 subjects. The dataset is freely available from the homepage (connectomeviewer.org). Conclusions: The ConnectomeViewer is a cross-platform, open-source software tool that provides extensive visualization and analysis capabilities for connectomic research. It has a modular architecture, integrates relevant datatypes and is completely scriptable. Visit www.connectomics.org to get involved as user or developer.
Resumo:
BACKGROUND: The estimation of demographic parameters from genetic data often requires the computation of likelihoods. However, the likelihood function is computationally intractable for many realistic evolutionary models, and the use of Bayesian inference has therefore been limited to very simple models. The situation changed recently with the advent of Approximate Bayesian Computation (ABC) algorithms allowing one to obtain parameter posterior distributions based on simulations not requiring likelihood computations. RESULTS: Here we present ABCtoolbox, a series of open source programs to perform Approximate Bayesian Computations (ABC). It implements various ABC algorithms including rejection sampling, MCMC without likelihood, a Particle-based sampler and ABC-GLM. ABCtoolbox is bundled with, but not limited to, a program that allows parameter inference in a population genetics context and the simultaneous use of different types of markers with different ploidy levels. In addition, ABCtoolbox can also interact with most simulation and summary statistics computation programs. The usability of the ABCtoolbox is demonstrated by inferring the evolutionary history of two evolutionary lineages of Microtus arvalis. Using nuclear microsatellites and mitochondrial sequence data in the same estimation procedure enabled us to infer sex-specific population sizes and migration rates and to find that males show smaller population sizes but much higher levels of migration than females. CONCLUSION: ABCtoolbox allows a user to perform all the necessary steps of a full ABC analysis, from parameter sampling from prior distributions, data simulations, computation of summary statistics, estimation of posterior distributions, model choice, validation of the estimation procedure, and visualization of the results.
Resumo:
This work extends a previously developed research concerning about the use of local model predictive control in differential driven mobile robots. Hence, experimental results are presented as a way to improve the methodology by considering aspects as trajectory accuracy and time performance. In this sense, the cost function and the prediction horizon are important aspects to be considered. The aim of the present work is to test the control method by measuring trajectory tracking accuracy and time performance. Moreover, strategies for the integration with perception system and path planning are briefly introduced. In this sense, monocular image data can be used to plan safety trajectories by using goal attraction potential fields
Resumo:
This research work deals with the problem of modeling and design of low level speed controller for the mobile robot PRIM. The main objective is to develop an effective educational, and research tool. On one hand, the interests in using the open mobile platform PRIM consist in integrating several highly related subjects to the automatic control theory in an educational context, by embracing the subjects of communications, signal processing, sensor fusion and hardware design, amongst others. On the other hand, the idea is to implement useful navigation strategies such that the robot can be served as a mobile multimedia information point. It is in this context, when navigation strategies are oriented to goal achievement, that a local model predictive control is attained. Hence, such studies are presented as a very interesting control strategy in order to develop the future capabilities of the system. In this context the research developed includes the visual information as a meaningful source that allows detecting the obstacle position coordinates as well as planning the free obstacle trajectory that should be reached by the robot
Resumo:
This work proposes a parallel architecture for a motion estimation algorithm. It is well known that image processing requires a huge amount of computation, mainly at low level processing where the algorithms are dealing with a great numbers of data-pixel. One of the solutions to estimate motions involves detection of the correspondences between two images. Due to its regular processing scheme, parallel implementation of correspondence problem can be an adequate approach to reduce the computation time. This work introduces parallel and real-time implementation of such low-level tasks to be carried out from the moment that the current image is acquired by the camera until the pairs of point-matchings are detected
Resumo:
Gene set enrichment (GSE) analysis is a popular framework for condensing information from gene expression profiles into a pathway or signature summary. The strengths of this approach over single gene analysis include noise and dimension reduction, as well as greater biological interpretability. As molecular profiling experiments move beyond simple case-control studies, robust and flexible GSE methodologies are needed that can model pathway activity within highly heterogeneous data sets. To address this challenge, we introduce Gene Set Variation Analysis (GSVA), a GSE method that estimates variation of pathway activity over a sample population in an unsupervised manner. We demonstrate the robustness of GSVA in a comparison with current state of the art sample-wise enrichment methods. Further, we provide examples of its utility in differential pathway activity and survival analysis. Lastly, we show how GSVA works analogously with data from both microarray and RNA-seq experiments. GSVA provides increased power to detect subtle pathway activity changes over a sample population in comparison to corresponding methods. While GSE methods are generally regarded as end points of a bioinformatic analysis, GSVA constitutes a starting point to build pathway-centric models of biology. Moreover, GSVA contributes to the current need of GSE methods for RNA-seq data. GSVA is an open source software package for R which forms part of the Bioconductor project and can be downloaded at http://www.bioconductor.org.
Resumo:
Aquest projecte consisteix en la creació d'una botiga virtual per a l'empresa CREATIFHPROMOS, companyia del sector del reclam publicitari; per a dur a terme aquest projecte, es realitzarà un estudi de les plataformes actuals de comerç electrònic “Open Source” desenvolupades en PHP, per tal de, a partir dels requeriments de l'empresa, seleccionar la més adient per a la seva implantació,i, en cas de ser necessari, desenvolupar nous mòduls i funcionalitats per adaptar als requeriments recollits.
Resumo:
The motivation for this research initiated from the abrupt rise and fall of minicomputers which were initially used both for industrial automation and business applications due to their significantly lower cost than their predecessors, the mainframes. Later industrial automation developed its own vertically integrated hardware and software to address the application needs of uninterrupted operations, real-time control and resilience to harsh environmental conditions. This has led to the creation of an independent industry, namely industrial automation used in PLC, DCS, SCADA and robot control systems. This industry employs today over 200'000 people in a profitable slow clockspeed context in contrast to the two mainstream computing industries of information technology (IT) focused on business applications and telecommunications focused on communications networks and hand-held devices. Already in 1990s it was foreseen that IT and communication would merge into one Information and communication industry (ICT). The fundamental question of the thesis is: Could industrial automation leverage a common technology platform with the newly formed ICT industry? Computer systems dominated by complex instruction set computers (CISC) were challenged during 1990s with higher performance reduced instruction set computers (RISC). RISC started to evolve parallel to the constant advancement of Moore's law. These developments created the high performance and low energy consumption System-on-Chip architecture (SoC). Unlike to the CISC processors RISC processor architecture is a separate industry from the RISC chip manufacturing industry. It also has several hardware independent software platforms consisting of integrated operating system, development environment, user interface and application market which enables customers to have more choices due to hardware independent real time capable software applications. An architecture disruption merged and the smartphone and tablet market were formed with new rules and new key players in the ICT industry. Today there are more RISC computer systems running Linux (or other Unix variants) than any other computer system. The astonishing rise of SoC based technologies and related software platforms in smartphones created in unit terms the largest installed base ever seen in the history of computers and is now being further extended by tablets. An underlying additional element of this transition is the increasing role of open source technologies both in software and hardware. This has driven the microprocessor based personal computer industry with few dominating closed operating system platforms into a steep decline. A significant factor in this process has been the separation of processor architecture and processor chip production and operating systems and application development platforms merger into integrated software platforms with proprietary application markets. Furthermore the pay-by-click marketing has changed the way applications development is compensated: Three essays on major trends in a slow clockspeed industry: The case of industrial automation 2014 freeware, ad based or licensed - all at a lower price and used by a wider customer base than ever before. Moreover, the concept of software maintenance contract is very remote in the app world. However, as a slow clockspeed industry, industrial automation has remained intact during the disruptions based on SoC and related software platforms in the ICT industries. Industrial automation incumbents continue to supply systems based on vertically integrated systems consisting of proprietary software and proprietary mainly microprocessor based hardware. They enjoy admirable profitability levels on a very narrow customer base due to strong technology-enabled customer lock-in and customers' high risk leverage as their production is dependent on fault-free operation of the industrial automation systems. When will this balance of power be disrupted? The thesis suggests how industrial automation could join the mainstream ICT industry and create an information, communication and automation (ICAT) industry. Lately the Internet of Things (loT) and weightless networks, a new standard leveraging frequency channels earlier occupied by TV broadcasting, have gradually started to change the rigid world of Machine to Machine (M2M) interaction. It is foreseeable that enough momentum will be created that the industrial automation market will in due course face an architecture disruption empowered by these new trends. This thesis examines the current state of industrial automation subject to the competition between the incumbents firstly through a research on cost competitiveness efforts in captive outsourcing of engineering, research and development and secondly researching process re- engineering in the case of complex system global software support. Thirdly we investigate the industry actors', namely customers, incumbents and newcomers, views on the future direction of industrial automation and conclude with our assessments of the possible routes industrial automation could advance taking into account the looming rise of the Internet of Things (loT) and weightless networks. Industrial automation is an industry dominated by a handful of global players each of them focusing on maintaining their own proprietary solutions. The rise of de facto standards like IBM PC, Unix and Linux and SoC leveraged by IBM, Compaq, Dell, HP, ARM, Apple, Google, Samsung and others have created new markets of personal computers, smartphone and tablets and will eventually also impact industrial automation through game changing commoditization and related control point and business model changes. This trend will inevitably continue, but the transition to a commoditized industrial automation will not happen in the near future.
Resumo:
En el presente proyecto se ha abordado la tarea de acercar las tecnologías existentes de plataformas de gestión de infraestructuras ofrecidas en la nube (Cloud Management Platform, aka CMP) al mundo empresarial. En concreto, se ha desplegado una solución de explotación de infraestructuras privadas en la nube (IaaS) enfocada a la gestión de un datacenter virtualizado, utilizando para ello soluciones completamente basadas en software libre, en concreto, OpenNebula.