967 resultados para Object oriented database
Resumo:
Many emerging applications benefit from the extraction of geospatial data specified at different resolutions for viewing purposes. Data must also be topologically accurate and up-to-date as it often represents real-world changing phenomena. Current multiresolution schemes use complex opaque data types, which limit the capacity for in-database object manipulation. By using z-values and B+trees to support multiresolution retrieval, objects are fragmented in such a way that updates to objects or object parts are executed using standard SQL (Structured Query Language) statements as opposed to procedural functions. Our approach is compared to a current model, using complex data types indexed under a 3D (three-dimensional) R-tree, and shows better performance for retrieval over realistic window sizes and data loads. Updates with the R-tree are slower and preclude the feasibility of its use in time-critical applications whereas, predictably, projecting the issue to a one-dimensional index allows constant updates using z-values to be implemented more efficiently.
Resumo:
In many Environmental Information Systems the actual observations arise from a discrete monitoring network which might be rather heterogeneous in both location and types of measurements made. In this paper we describe the architecture and infrastructure for a system, developed as part of the EU FP6 funded INTAMAP project, to provide a service oriented solution that allows the construction of an interoperable, automatic, interpolation system. This system will be based on the Open Geospatial Consortium’s Web Feature Service (WFS) standard. The essence of our approach is to extend the GML3.1 observation feature to include information about the sensor using SensorML, and to further extend this to incorporate observation error characteristics. Our extended WFS will accept observations, and will store them in a database. The observations will be passed to our R-based interpolation server, which will use a range of methods, including a novel sparse, sequential kriging method (only briefly described here) to produce an internal representation of the interpolated field resulting from the observations currently uploaded to the system. The extended WFS will then accept queries, such as ‘What is the probability distribution of the desired variable at a given point’, ‘What is the mean value over a given region’, or ‘What is the probability of exceeding a certain threshold at a given location’. To support information-rich transfer of complex and uncertain predictions we are developing schema to represent probabilistic results in a GML3.1 (object-property) style. The system will also offer more easily accessible Web Map Service and Web Coverage Service interfaces to allow users to access the system at the level of complexity they require for their specific application. Such a system will offer a very valuable contribution to the next generation of Environmental Information Systems in the context of real time mapping for monitoring and security, particularly for systems that employ a service oriented architecture.
Resumo:
When object databases arrived on the scene some ten years ago, they provided database capabilities for previously neglected, complex applications, such as CAD, but were burdened with one inherent teething problem, poor performance. Physical database design is one tool that can provide performance improvements and it is the general area of concern for this thesis. Clustering is one fruitful design technique which can provide improvements in performance. However, clustering in object databases has not been explored in depth and so has not been truly exploited. Further, clustering, although a physical concern, can be determined from the logical model. The object model is richer than previous models, notably the relational model, and so it is anticipated that the opportunities with respect to clustering are greater. This thesis provides a thorough analysis of object clustering strategies with a view to highlighting any links between the object logical and physical model and improving performance. This is achieved by considering all possible types of object logical model construct and the implementation of those constructs in terms of theoretical clusterings strategies to produce actual clustering arrangements. This analysis results in a greater understanding of object clustering strategies, aiding designers in the development process and providing some valuable rules of thumb to support the design process.
Resumo:
The authors studied the influence of canonical orientation on visual search for object orientation. Displays consisted of pictures of animals whose axis of elongation was either vertical or tilted in their canonical orientation. Target orientation could be either congruent or incongruent with the object's canonical orientation. In Experiment 1, vertical canonical targets were detected faster when they were tilted (incongruent) than when they were vertical (congruent). This search asymmetry was reversed for tilted canonical targets. The effect of canonical orientation was partially preserved when objects were high-pass filtered, but it was eliminated when they were low-pass filtered, rendering them as unfamiliar shapes (Experiment 2). The effect of canonical orientation was also eliminated by inverting the objects (Experiment 3) and in a patient with visual agnosia (Experiment 4). These results indicate that orientation search with familiar objects can be modulated by canonical orientation, and they indicate a top-down influence on orientation processing. (PsycINFO Database Record (c) 2010 APA, all rights reserved)
Resumo:
This article presents the principal results of the doctoral thesis “Semantic-oriented Architecture and Models for Personalized and Adaptive Access to the Knowledge in Multimedia Digital Library” by Desislava Ivanova Paneva-Marinova (Institute of Mathematics and Informatics), successfully defended before the Specialised Academic Council for Informatics and Mathematical Modelling on 27 October, 2008.
Resumo:
ACM Computing Classification System (1998): H.5.2, H.2.8, J.2, H.5.3.
Resumo:
ACM Computing Classification System (1998): D.2.5, D.2.9, D.2.11.
Resumo:
The Semantic Binary Data Model (SBM) is a viable alternative to the now-dominant relational data model. SBM would be especially advantageous for applications dealing with complex interrelated networks of objects provided that a robust efficient implementation can be achieved. This dissertation presents an implementation design method for SBM, algorithms, and their analytical and empirical evaluation. Our method allows building a robust and flexible database engine with a wider applicability range and improved performance. ^ Extensions to SBM are introduced and an implementation of these extensions is proposed that allows the database engine to efficiently support applications with a predefined set of queries. A New Record data structure is proposed. Trade-offs of employing Fact, Record and Bitmap Data structures for storing information in a semantic database are analyzed. ^ A clustering ID distribution algorithm and an efficient algorithm for object ID encoding are proposed. Mapping to an XML data model is analyzed and a new XML-based XSDL language facilitating interoperability of the system is defined. Solutions to issues associated with making the database engine multi-platform are presented. An improvement to the atomic update algorithm suitable for certain scenarios of database recovery is proposed. ^ Specific guidelines are devised for implementing a robust and well-performing database engine based on the extended Semantic Data Model. ^
Resumo:
The main challenges of multimedia data retrieval lie in the effective mapping between low-level features and high-level concepts, and in the individual users' subjective perceptions of multimedia content. ^ The objectives of this dissertation are to develop an integrated multimedia indexing and retrieval framework with the aim to bridge the gap between semantic concepts and low-level features. To achieve this goal, a set of core techniques have been developed, including image segmentation, content-based image retrieval, object tracking, video indexing, and video event detection. These core techniques are integrated in a systematic way to enable the semantic search for images/videos, and can be tailored to solve the problems in other multimedia related domains. In image retrieval, two new methods of bridging the semantic gap are proposed: (1) for general content-based image retrieval, a stochastic mechanism is utilized to enable the long-term learning of high-level concepts from a set of training data, such as user access frequencies and access patterns of images. (2) In addition to whole-image retrieval, a novel multiple instance learning framework is proposed for object-based image retrieval, by which a user is allowed to more effectively search for images that contain multiple objects of interest. An enhanced image segmentation algorithm is developed to extract the object information from images. This segmentation algorithm is further used in video indexing and retrieval, by which a robust video shot/scene segmentation method is developed based on low-level visual feature comparison, object tracking, and audio analysis. Based on shot boundaries, a novel data mining framework is further proposed to detect events in soccer videos, while fully utilizing the multi-modality features and object information obtained through video shot/scene detection. ^ Another contribution of this dissertation is the potential of the above techniques to be tailored and applied to other multimedia applications. This is demonstrated by their utilization in traffic video surveillance applications. The enhanced image segmentation algorithm, coupled with an adaptive background learning algorithm, improves the performance of vehicle identification. A sophisticated object tracking algorithm is proposed to track individual vehicles, while the spatial and temporal relationships of vehicle objects are modeled by an abstract semantic model. ^
Resumo:
With the proliferation of multimedia data and ever-growing requests for multimedia applications, there is an increasing need for efficient and effective indexing, storage and retrieval of multimedia data, such as graphics, images, animation, video, audio and text. Due to the special characteristics of the multimedia data, the Multimedia Database management Systems (MMDBMSs) have emerged and attracted great research attention in recent years. Though much research effort has been devoted to this area, it is still far from maturity and there exist many open issues. In this dissertation, with the focus of addressing three of the essential challenges in developing the MMDBMS, namely, semantic gap, perception subjectivity and data organization, a systematic and integrated framework is proposed with video database and image database serving as the testbed. In particular, the framework addresses these challenges separately yet coherently from three main aspects of a MMDBMS: multimedia data representation, indexing and retrieval. In terms of multimedia data representation, the key to address the semantic gap issue is to intelligently and automatically model the mid-level representation and/or semi-semantic descriptors besides the extraction of the low-level media features. The data organization challenge is mainly addressed by the aspect of media indexing where various levels of indexing are required to support the diverse query requirements. In particular, the focus of this study is to facilitate the high-level video indexing by proposing a multimodal event mining framework associated with temporal knowledge discovery approaches. With respect to the perception subjectivity issue, advanced techniques are proposed to support users' interaction and to effectively model users' perception from the feedback at both the image-level and object-level.
Resumo:
Component-based Software Engineering (CBSE) and Service-Oriented Architecture (SOA) became popular ways to develop software over the last years. During the life-cycle of a software system, several components and services can be developed, evolved and replaced. In production environments, the replacement of core components, such as databases, is often a risky and delicate operation, where several factors and stakeholders should be considered. Service Level Agreement (SLA), according to ITILv3’s official glossary, is “an agreement between an IT service provider and a customer. The agreement consists on a set of measurable constraints that a service provider must guarantee to its customers.”. In practical terms, SLA is a document that a service provider delivers to its consumers with minimum quality of service (QoS) metrics.This work is intended to assesses and improve the use of SLAs to guide the transitioning process of databases on production environments. In particular, in this work we propose SLA-Based Guidelines/Process to support migrations from a relational database management system (RDBMS) to a NoSQL one. Our study is validated by case studies.
Resumo:
Calcitic belemnite rostra are usually employed to perform paleoenvironmental studies based on geochemical data. However, several questions, such as their original porosity and microstructure, remain open, despite they are essential to make accurate interpretations based on geochemical analyses.This paper revisits and enlightens some of these questions. Petrographic data demonstrate that calcite crystals of the rostrum solidum of belemnites grow from spherulites that successively develop along the apical line, resulting in a “regular spherulithic prismatic” microstructure. Radially arranged calcite crystals emerge and diverge from the spherulites: towards the apex, crystals grow until a new spherulite is formed; towards the external walls of the rostrum, the crystals become progressively bigger and prismatic. Adjacent crystals slightly vary in their c-axis orientation, resulting in undulose extinction. Concentric growth layering develops at different scales and is superimposed and traversed by a radial pattern, which results in the micro-fibrous texture that is observed in the calcite crystals in the rostra.Petrographic data demonstrate that single calcite crystals in the rostra have a composite nature, which strongly suggests that the belemnite rostra were originally porous. Single crystals consistently comprise two distinct zones or sectors in optical continuity: 1) the inner zone is fluorescent, has relatively low optical relief under transmitted light (TL) microscopy, a dark-grey color under backscatter electron microscopy (BSEM), a commonly triangular shape, a “patchy” appearance and relatively high Mg and Na contents; 2) the outer sector is non-fluorescent, has relatively high optical relief under TL, a light-grey color under BSEM and low Mg and Na contents. The inner and fluorescent sectors are interpreted to have formed first as a product of biologically controlled mineralization during belemnite skeletal growth and the non-fluorescent outer sectors as overgrowths of the former, filling the intra- and inter-crystalline porosity. This question has important implications for making paleoenvironmental and/or paleoclimatic interpretations based on geochemical analyses of belemnite rostra.Finally, the petrographic features of composite calcite crystals in the rostra also suggest the non-classical crystallization of belemnite rostra, as previously suggested by other authors.
Resumo:
Portable Document Format (PDF) is a page-oriented, graphically rich format based on PostScript semantics and it is also the format interpreted by the Adobe Acrobat viewers. Although each of the pages in a PDF document is an independent graphic object this property does not necessarily extend to the components (headings, diagrams, paragraphs etc.) within a page. This, in turn, makes the manipulation and extraction of graphic objects on a PDF page into a very difficult and uncertain process. The work described here investigates the advantages of a model wherein PDF pages are created from assemblies of COGs (Component Object Graphics) each with a clearly defined graphic state. The relative positioning of COGs on a PDF page is determined by appropriate "spacer" objects and a traversal of the tree of COGs and spacers determines the rendering order. The enhanced revisability of PDF documents within the COG model is discussed, together with the application of the model in those contexts which require easy revisability coupled with the ability to maintain and amend PDF document structure.
Resumo:
According to much evidence, observing objects activates two types of information: structural properties, i.e., the visual information about the structural features of objects, and function knowledge, i.e., the conceptual information about their skilful use. Many studies so far have focused on the role played by these two kinds of information during object recognition and on their neural underpinnings. However, to the best of our knowledge no study so far has focused on the different activation of this information (structural vs. function) during object manipulation and conceptualization, depending on the age of participants and on the level of object familiarity (familiar vs. non-familiar). Therefore, the main aim of this dissertation was to investigate how actions and concepts related to familiar and non-familiar objects may vary across development. To pursue this aim, four studies were carried out. A first study led to the creation of the Familiar and Non-Familiar Stimuli Database, a set of everyday objects classified by Italian pre-schoolers, schoolers, and adults, useful to verify how object knowledge is modulated by age and frequency of use. A parallel study demonstrated that factors such as sociocultural dynamics may affect the perception of objects. Specifically, data for familiarity, naming, function, using and frequency of use of the objects used to create the Familiar And Non-Familiar Stimuli Database were collected with Dutch and Croatian children and adults. The last two studies on object interaction and language provide further evidence in support of the literature on affordances and on the link between affordances and the cognitive process of language from a developmental point of view, supporting the perspective of a situated cognition and emphasizing the crucial role of human experience.
Resumo:
Different types of water bodies, including lakes, streams, and coastal marine waters, are often susceptible to fecal contamination from a range of point and nonpoint sources, and have been evaluated using fecal indicator microorganisms. The most commonly used fecal indicator is Escherichia coli, but traditional cultivation methods do not allow discrimination of the source of pollution. The use of triplex PCR offers an approach that is fast and inexpensive, and here enabled the identification of phylogroups. The phylogenetic distribution of E. coli subgroups isolated from water samples revealed higher frequencies of subgroups A1 and B23 in rivers impacted by human pollution sources, while subgroups D1 and D2 were associated with pristine sites, and subgroup B1 with domesticated animal sources, suggesting their use as a first screening for pollution source identification. A simple classification is also proposed based on phylogenetic subgroup distribution using the w-clique metric, enabling differentiation of polluted and unpolluted sites.